ﻻ يوجد ملخص باللغة العربية
To study the resolution required for simulating gravitational fragmentation with newly developed Lagrangian hydrodynamic schemes, Meshless Finite Volume method (MFV) and Meshless Finite Mass method (MFM), we have performed a number of simulations of the Jeans test and compared the results with both the expected analytic solution and results from the more standard Lagrangian approach: Smoothed Particle Hydrodynamics (SPH). We find that the different schemes converge to the analytic solution when the diameter of a fluid element is smaller than a quarter of the Jeans wavelength, $lambda_mathrm{J}$. Among the three schemes, SPH/MFV shows the fastest/slowest convergence to the analytic solution. Unlike the well-known behaviour of Eulerian schemes, none of the Lagrangian schemes investigated displays artificial fragmentation when the perturbation wavelength, $lambda$, is shorter than $lambda_mathrm{J}$, even at low numerical resolution. For larger wavelengths ($lambda > lambda_mathrm{J}$) the growth of the perturbation is delayed when it is not well resolved. Furthermore, with poor resolution, the fragmentation seen with the MFV scheme proceeds very differently compared to the converged solution. All these results suggest that, when unresolved, the ratio of the magnitude of hydrodynamic force to that of self-gravity at the sub-resolution scale is the largest/smallest in MFV/SPH, the reasons for which we discussed in detail. These tests are repeated to investigate the effect of kernels of higher-order than the fiducial cubic spline. Our results indicate that the standard deviation of the kernel is a more appropriate definition of the size of a fluid element than its compact support radius.
The intent of this paper is to discuss the history and origins of Lagrangian hydrodynamic methods for simulating shock driven flows. The majority of the pioneering research occurred within the Manhattan Project. A range of Lagrangian hydrodynamic sch
We present the implementation and performance of a class of directionally unsplit Riemann-solver-based hydrodynamic schemes on Graphic Processing Units (GPU). These schemes, including the MUSCL-Hancock method, a variant of the MUSCL-Hancock method, a
RadioAstron satellite admits in principle a testing the gravitational redshift effect with an accuracy of better than $10^{-5}$. It would surpass the result of Gravity Probe A mission at least an order of magnitude. However, RadioAstrons communicatio
Advanced LIGO and the next generation of ground-based detectors aim to capture many more binary coalescences through improving sensitivity and duty cycle. Earthquakes have always been a limiting factor at low frequency where neither the pendulum susp
Aims. A transient astrophysical event observed in both gravitational wave (GW) and electromagnetic (EM) channels would yield rich scientific rewards. A first program initiating EM follow-ups to possible transient GW events has been developed and exer