ﻻ يوجد ملخص باللغة العربية
Aims. A transient astrophysical event observed in both gravitational wave (GW) and electromagnetic (EM) channels would yield rich scientific rewards. A first program initiating EM follow-ups to possible transient GW events has been developed and exercised by the LIGO and Virgo community in association with several partners. In this paper, we describe and evaluate the methods used to promptly identify and localize GW event candidates and to request images of targeted sky locations. Methods. During two observing periods (Dec 17 2009 to Jan 8 2010 and Sep 2 to Oct 20 2010), a low-latency analysis pipeline was used to identify GW event candidates and to reconstruct maps of possible sky locations. A catalog of nearby galaxies and Milky Way globular clusters was used to select the most promising sky positions to be imaged, and this directional information was delivered to EM observatories with time lags of about thirty minutes. A Monte Carlo simulation has been used to evaluate the low-latency GW pipelines ability to reconstruct source positions correctly. Results. For signals near the detection threshold, our low-latency algorithms often localized simulated GW burst signals to tens of square degrees, while neutron star/neutron star inspirals and neutron star/black hole inspirals were localized to a few hundred square degrees. Localization precision improves for moderately stronger signals. The correct sky location of signals well above threshold and originating from nearby galaxies may be observed with ~50% or better probability with a few pointings of wide-field telescopes.
A pioneering electromagnetic (EM) observation follow-up program of candidate gravitational wave (GW) triggers has been performed, Dec 17 2009 to Jan 8 2010 and Sep 4 to Oct 20 2010, during the recent LIGO/Virgo run. The follow-up program involved gro
Multimessenger observations of the binary neutron star merger GW170817 have enabled the discovery of a diverse array of electromagnetic counterparts to compact binary mergers, including an unambiguous kilonova, a short gamma-ray burst, and a late-tim
With the detection of a binary neutron star system and its corresponding electromagnetic counterparts, a new window of transient astronomy has opened. Due to the size of the error regions, which can span hundreds to thousands of square degrees, there
Aims. The detection and measurement of gravitational-waves from coalescing neutron-star binary systems is an important science goal for ground-based gravitational-wave detectors. In addition to emitting gravitational-waves at frequencies that span th
Searches for gravitational-wave counterparts have been going in earnest since GW170817 and the discovery of AT2017gfo. Since then, the lack of detection of other optical counterparts connected to binary neutron star or black hole - neutron star candi