ﻻ يوجد ملخص باللغة العربية
We investigate the application of ensemble transform approaches to Bayesian inference of logistic regression problems. Our approach relies on appropriate extensions of the popular ensemble Kalman filter and the feedback particle filter to the cross entropy loss function and is based on a well-established homotopy approach to Bayesian inference. The arising finite particle evolution equations as well as their mean-field limits are affine-invariant. Furthermore, the proposed methods can be implemented in a gradient-free manner in case of nonlinear logistic regression and the data can be randomly subsampled similar to mini-batching of stochastic gradient descent. We also propose a closely related SDE-based sampling method which again is affine-invariant and can easily be made gradient-free. Numerical examples demonstrate the appropriateness of the proposed methodologies.
Several numerical tools designed to overcome the challenges of smoothing in a nonlinear and non-Gaussian setting are investigated for a class of particle smoothers. The considered family of smoothers is induced by the class of linear ensemble transfo
The increasing availability of data presents an opportunity to calibrate unknown parameters which appear in complex models of phenomena in the biomedical, physical and social sciences. However, model complexity often leads to parameter-to-data maps w
This paper explores Tadmors minimum entropy principle for the relativistic hydrodynamics (RHD) equations and incorporates this principle into the design of robust high-order discontinuous Galerkin (DG) and finite volume schemes for RHD on general mes
This paper gives a unified convergence analysis of additive Schwarz methods for general convex optimization problems. Resembling to the fact that additive Schwarz methods for linear problems are preconditioned Richardson methods, we prove that additi
We present a novel algorithm based on the ensemble Kalman filter to solve inverse problems involving multiscale elliptic partial differential equations. Our method is based on numerical homogenization and finite element discretization and allows to r