ﻻ يوجد ملخص باللغة العربية
Neural machine translation (NMT) models are conventionally trained with token-level negative log-likelihood (NLL), which does not guarantee that the generated translations will be optimized for a selected sequence-level evaluation metric. Multiple approaches are proposed to train NMT with BLEU as the reward, in order to directly improve the metric. However, it was reported that the gain in BLEU does not translate to real quality improvement, limiting the application in industry. Recently, it became clear to the community that BLEU has a low correlation with human judgment when dealing with state-of-the-art models. This leads to the emerging of model-based evaluation metrics. These new metrics are shown to have a much higher human correlation. In this paper, we investigate whether it is beneficial to optimize NMT models with the state-of-the-art model-based metric, BLEURT. We propose a contrastive-margin loss for fast and stable reward optimization suitable for large NMT models. In experiments, we perform automatic and human evaluations to compare models trained with smoothed BLEU and BLEURT to the baseline models. Results show that the reward optimization with BLEURT is able to increase the metric scores by a large margin, in contrast to limited gain when training with smoothed BLEU. The human evaluation shows that models trained with BLEURT improve adequacy and coverage of translations. Code is available via https://github.com/naver-ai/MetricMT.
Machine translation (MT) systems translate text between different languages by automatically learning in-depth knowledge of bilingual lexicons, grammar and semantics from the training examples. Although neural machine translation (NMT) has led the fi
In Transformer-based neural machine translation (NMT), the positional encoding mechanism helps the self-attention networks to learn the source representation with order dependency, which makes the Transformer-based NMT achieve state-of-the-art result
Multilingual neural machine translation (NMT), which translates multiple languages using a single model, is of great practical importance due to its advantages in simplifying the training process, reducing online maintenance costs, and enhancing low-
We describe Sockeye (version 1.12), an open-source sequence-to-sequence toolkit for Neural Machine Translation (NMT). Sockeye is a production-ready framework for training and applying models as well as an experimental platform for researchers. Writte
The encoder-decoder based neural machine translation usually generates a target sequence token by token from left to right. Due to error propagation, the tokens in the right side of the generated sequence are usually of poorer quality than those in t