ترغب بنشر مسار تعليمي؟ اضغط هنا

Efficient Bidirectional Neural Machine Translation

138   0   0.0 ( 0 )
 نشر من قبل Xu Tan
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The encoder-decoder based neural machine translation usually generates a target sequence token by token from left to right. Due to error propagation, the tokens in the right side of the generated sequence are usually of poorer quality than those in the left side. In this paper, we propose an efficient method to generate a sequence in both left-to-right and right-to-left manners using a single encoder and decoder, combining the advantages of both generation directions. Experiments on three translation tasks show that our method achieves significant improvements over conventional unidirectional approach. Compared with ensemble methods that train and combine two models with different generation directions, our method saves 50% model parameters and about 40% training time, and also improve inference speed.



قيم البحث

اقرأ أيضاً

98 - Liang Ding , Di Wu , Dacheng Tao 2021
We present a simple and effective pretraining strategy -- bidirectional training (BiT) for neural machine translation. Specifically, we bidirectionally update the model parameters at the early stage and then tune the model normally. To achieve bidire ctional updating, we simply reconstruct the training samples from src$rightarrow$tgt to src+tgt$rightarrow$tgt+src without any complicated model modifications. Notably, our approach does not increase any parameters or training steps, requiring the parallel data merely. Experimental results show that BiT pushes the SOTA neural machine translation performance across 15 translation tasks on 8 language pairs (data sizes range from 160K to 38M) significantly higher. Encouragingly, our proposed model can complement existing data manipulation strategies, i.e. back translation, data distillation, and data diversification. Extensive analyses show that our approach functions as a novel bilingual code-switcher, obtaining better bilingual alignment.
Multilingual NMT has become an attractive solution for MT deployment in production. But to match bilingual quality, it comes at the cost of larger and slower models. In this work, we consider several ways to make multilingual NMT faster at inference without degrading its quality. We experiment with several light decoder architectures in two 20-language multi-parallel settings: small-scale on TED Talks and large-scale on ParaCrawl. Our experiments demonstrate that combining a shallow decoder with vocabulary filtering leads to more than twice faster inference with no loss in translation quality. We validate our findings with BLEU and chrF (on 380 language pairs), robustness evaluation and human evaluation.
268 - Ankush Garg , Yuan Cao , 2020
We present neural machine translation (NMT) models inspired by echo state network (ESN), named Echo State NMT (ESNMT), in which the encoder and decoder layer weights are randomly generated then fixed throughout training. We show that even with this e xtremely simple model construction and training procedure, ESNMT can already reach 70-80% quality of fully trainable baselines. We examine how spectral radius of the reservoir, a key quantity that characterizes the model, determines the model behavior. Our findings indicate that randomized networks can work well even for complicated sequence-to-sequence prediction NLP tasks.
The attentional mechanism has proven to be effective in improving end-to-end neural machine translation. However, due to the intricate structural divergence between natural languages, unidirectional attention-based models might only capture partial a spects of attentional regularities. We propose agreement-based joint training for bidirectional attention-based end-to-end neural machine translation. Instead of training source-to-target and target-to-source translation models independently,our approach encourages the two complementary models to agree on word alignment matrices on the same training data. Experiments on Chinese-English and English-French translation tasks show that agreement-based joint training significantly improves both alignment and translation quality over independent training.
We investigate two specific manifestations of compositionality in Neural Machine Translation (NMT) : (1) Productivity - the ability of the model to extend its predictions beyond the observed length in training data and (2) Systematicity - the ability of the model to systematically recombine known parts and rules. We evaluate a standard Sequence to Sequence model on tests designed to assess these two properties in NMT. We quantitatively demonstrate that inadequate temporal processing, in the form of poor encoder representations is a bottleneck for both Productivity and Systematicity. We propose a simple pre-training mechanism which alleviates model performance on the two properties and leads to a significant improvement in BLEU scores.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا