ﻻ يوجد ملخص باللغة العربية
The origins of herbal medicines are important for their treatment effect, which could be potentially distinguished by electronic nose system. As the odor fingerprint of herbal medicines from different origins can be tiny, the discrimination of origins can be much harder than that of different categories. Better feature extraction methods are significant for this task to be more accurately done, but there lacks systematic studies on different feature extraction methods. In this study, we classified different origins of three categories of herbal medicines with different feature extraction methods: manual feature extraction, mathematical transformation, deep learning algorithms. With 50 repetitive experiments with bootstrapping, we compared the effectiveness of the extractions with a two-layer neural network w/o dimensionality reduction methods (principal component analysis, linear discriminant analysis) as the three base classifiers. Compared with the conventional aggregated features, the Fast Fourier Transform method and our novel approach (longitudinal-information-in-a-line) showed an significant accuracy improvement(p < 0.05) on all 3 base classifiers and all three herbal medicine categories. Two of the deep learning algorithm we applied also showed partially significant improvement: one-dimensional convolution neural network(1D-CNN) and a novel graph pooling based framework - multivariate time pooling(MTPool).
In machine learning applications, the reliability of predictions is significant for assisted decision and risk control. As an effective framework to quantify the prediction reliability, conformal prediction (CP) was developed with the CPKNN (CP with
Electronic nose has been proven to be effective in alternative herbal medicine classification, but due to the nature of supervised learning, previous research heavily relies on the labelled training data, which are time-costly and labor-intensive to
A number of recent emerging applications call for studying data streams, potentially infinite flows of information updated in real-time. When multiple co-evolving data streams are observed, an important task is to determine how these streams depend o
It is basic question in biology and other fields to identify the char- acteristic properties that on one hand are shared by structures from a particular realm, like gene regulation, protein-protein interaction or neu- ral networks or foodwebs, and th
The exploration of epidemic dynamics on dynamically evolving (adaptive) networks poses nontrivial challenges to the modeler, such as the determination of a small number of informative statistics of the detailed network state (that is, a few good obse