ﻻ يوجد ملخص باللغة العربية
We present a second-order ensemble method based on a blended three-step backward differentiation formula (BDF) timestepping scheme to compute an ensemble of Navier-Stokes equations. Compared with the only existing second-order ensemble method that combines the two-step BDF timestepping scheme and a special explicit second-order Adams-Bashforth treatment of the advection term, this method is more accurate with nominal increase in computational cost. We give comprehensive stability and error analysis for the method. Numerical examples are also provided to verify theoretical results and demonstrate the improved accuracy of the method.
We propose and study numerically the implicit approximation in time of the Navier-Stokes equations by a Galerkin-collocation method in time combined with inf-sup stable finite element methods in space. The conceptual basis of the Galerkin-collocation
In this paper, we study a novel second-order energy stable Backward Differentiation Formula (BDF) finite difference scheme for the epitaxial thin film equation with slope selection (SS). One major challenge for the higher oder in time temporal discre
We propose a novel second order in time numerical scheme for Cahn-Hilliard-Navier- Stokes phase field model with matched density. The scheme is based on second order convex-splitting for the Cahn-Hilliard equation and pressure-projection for the Navi
We present a projection-based framework for solving a thermodynamically-consistent Cahn-Hilliard Navier-Stokes system that models two-phase flows. In this work we extend the fully implicit method presented in Khanwale et al. [{it A fully-coupled fram
This article is concerned with the discretisation of the Stokes equations on time-dependent domains in an Eulerian coordinate framework. Our work can be seen as an extension of a recent paper by Lehrenfeld & Olshanskii [ESAIM: M2AN, 53(2):585-614, 20