ترغب بنشر مسار تعليمي؟ اضغط هنا

A second order in time, uniquely solvable, unconditionally stable numerical scheme for Cahn-Hilliard-Navier-Stokes equation

190   0   0.0 ( 0 )
 نشر من قبل Xiaoming Wang
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a novel second order in time numerical scheme for Cahn-Hilliard-Navier- Stokes phase field model with matched density. The scheme is based on second order convex-splitting for the Cahn-Hilliard equation and pressure-projection for the Navier-Stokes equation. We show that the scheme is mass-conservative, satisfies a modified energy law and is therefore unconditionally stable. Moreover, we prove that the scheme is uncondition- ally uniquely solvable at each time step by exploring the monotonicity associated with the scheme. Thanks to the weak coupling of the scheme, we design an efficient Picard iteration procedure to further decouple the computation of Cahn-Hilliard equation and Navier-Stokes equation. We implement the scheme by the mixed finite element method. Ample numerical experiments are performed to validate the accuracy and efficiency of the numerical scheme.



قيم البحث

اقرأ أيضاً

Hydrodynamics coupled phase field models have intricate difficulties to solve numerically as they feature high nonlinearity and great complexity in coupling. In this paper, we propose two second order, linear, unconditionally stable decoupling method s based on the Crank--Nicolson leap-frog time discretization for solving the Allen--Cahn--Navier--Stokes (ACNS) phase field model of two-phase incompressible flows. The ACNS system is decoupled via the artificial compression method and a splitting approach by introducing an exponential scalar auxiliary variable. We prove both algorithms are unconditionally long time stable. Numerical examples are provided to verify the convergence rate and unconditional stability.
We present a second-order-in-time finite difference scheme for the Cahn-Hilliard-Hele-Shaw equations. This numerical method is uniquely solvable and unconditionally energy stable. At each time step, this scheme leads to a system of nonlinear equation s that can be efficiently solved by a nonlinear multigrid solver. Owing to the energy stability, we derive an $ell^2 (0,T; H_h^3)$ stability of the numerical scheme. To overcome the difficulty associated with the convection term $ abla cdot (phi boldsymbol{u})$, we perform an $ell^infty (0,T; H_h^1)$ error estimate instead of the classical $ell^infty (0,T; ell^2)$ one to obtain the optimal rate convergence analysis. In addition, various numerical simulations are carried out, which demonstrate the accuracy and efficiency of the proposed numerical scheme.
We propose and analyze two novel decoupled numerical schemes for solving the Cahn-Hilliard-Stokes-Darcy (CHSD) model for two-phase flows in karstic geometry. In the first numerical scheme, we explore a fractional step method (operator splitting) to d ecouple the phase-field (Cahn-Hilliard equation) from the velocity field (Stokes-Darcy fluid equations). To further decouple the Stokes-Darcy system, we introduce a first order pressure stabilization term in the Darcy solver in the second numerical scheme so that the Stokes system is decoupled from the Darcy system and hence the CHSD system can be solved in a fully decoupled manner. We show that both decoupled numerical schemes are uniquely solvable, energy stable, and mass conservative. Ample numerical results are presented to demonstrate the accuracy and efficiency of our schemes.
In this paper we propose and analyze an energy stable numerical scheme for the Cahn-Hilliard equation, with second order accuracy in time and the fourth order finite difference approximation in space. In particular, the truncation error for the long stencil fourth order finite difference approximation, over a uniform numerical grid with a periodic boundary condition, is analyzed, via the help of discrete Fourier analysis instead of the the standard Taylor expansion. This in turn results in a reduced regularity requirement for the test function. In the temporal approximation, we apply a second order BDF stencil, combined with a second order extrapolation formula applied to the concave diffusion term, as well as a second order artificial Douglas-Dupont regularization term, for the sake of energy stability. As a result, the unique solvability, energy stability are established for the proposed numerical scheme, and an optimal rate convergence analysis is derived in the $ell^infty (0,T; ell^2) cap ell^2 (0,T; H_h^2)$ norm. A few numerical experiments are presented, which confirm the robustness and accuracy of the proposed scheme.
We present and analyze a new second-order finite difference scheme for the Macromolecular Microsphere Composite hydrogel, Time-Dependent Ginzburg-Landau (MMC-TDGL) equation, a Cahn-Hilliard equation with Flory-Huggins-deGennes energy potential. This numerical scheme with unconditional energy stability is based on the Backward Differentiation Formula (BDF) method time derivation combining with Douglas-Dupont regularization term. In addition, we present a point-wise bound of the numerical solution for the proposed scheme in the theoretical level. For the convergent analysis, we treat three nonlinear logarithmic terms as a whole and deal with all logarithmic terms directly by using the property that the nonlinear error inner product is always non-negative. Moreover, we present the detailed convergent analysis in $ell^infty (0,T; H_h^{-1}) cap ell^2 (0,T; H_h^1)$ norm. At last, we use the local Newton approximation and multigrid method to solve the nonlinear numerical scheme, and various numerical results are presented, including the numerical convergence test, positivity-preserving property test, spinodal decomposition, energy dissipation and mass conservation properties.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا