ﻻ يوجد ملخص باللغة العربية
Let $q>2$ be an odd integer. For each integer $x$ with $0<x<q$ and $(q,x)= 1$, we know that there exists one and only one $bar{x}$ with $0<bar{x}<q$ such that $xbar{x}equiv1(bmod q)$. A Lehmer number is defined to be any integer $a$ with $2dagger(a+bar{a})$. For any nonnegative integer $k$, Let $$ M(x,q,k)=displaystylemathop {displaystylemathop{sum{}}_{a=1}^{q} displaystylemathop{sum{}}_{bleq xq}}_{mbox{$tinybegin{array}{c} 2|a+b+1 abequiv1(bmod q)end{array}$}}(a-b)^{2k}.$$ The main purpose of this paper is to study the properties of $M(x,q,k)$, and give a sharp asymptotic formula, by using estimates of Kloostermans sums and properties of trigonometric sums.
For regular continued fraction, if a real number $x$ and its rational approximation $p/q$ satisfying $|x-p/q|<1/q^2$, then, after deleting the last integer of the partial quotients of $p/q$, the sequence of the remaining partial quotients is a prefix
Let $K$ be a 1-dimensional function field over an algebraically closed field of characteristic $0$, and let $A/K$ be an abelian surface. Under mild assumptions, we prove a Lehmer-type lower bound for points in $A(bar{K})$. More precisely, we prove th
We construct fields of algebraic numbers that have the Lehmer property but not the Bogomolov property. This answers a recent implicit question of Pengo and the first author.
We report the first determination of the relative strong-phase difference between D^0 -> K^0_S,L K^+ K^- and D^0-bar -> K^0_S,L K^+ K^-. In addition, we present updated measurements of the relative strong-phase difference between D^0 -> K^0_S,L pi^+
Most hypersurfaces in projective space are irreducible, and rather precise estimates are known for the probability that a random hypersurface over a finite field is reducible. This paper considers the parametrization of space curves by the appropriat