ترغب بنشر مسار تعليمي؟ اضغط هنا

An HST/STIS View of Protoplanetary Disks in Upper Scorpius: Observations of Three Young M-Stars

67   0   0.0 ( 0 )
 نشر من قبل Samuel Walker
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present observations of three protoplanetary disks in visible scattered light around M-type stars in the Upper Scorpius OB association using the STIS instrument on the Hubble Space Telescope. The disks around stars 2MASS J16090075-1908526, 2MASS J16142029-1906481 and 2MASS J16123916-1859284 have all been previously detected with ALMA, and 2MASS J16123916-1859284 has never previously been imaged at scattered light wavelengths. We process our images using Reference Differential Imaging, comparing and contrasting three reduction techniques - classical subtraction, Karhunen-Loeve Image Projection and Non-Negative Matrix Factorisation, selecting the classical method as the most reliable of the three for our observations. Of the three disks, two are tentatively detected (2MASS J16142029-1906481 and 2MASS J16123916-1859284), with the third going undetected. Our two detections are shown to be consistent when varying the reference star or reduction method used, and both detections exhibit structure out to projected distances of > 200 au. Structures at these distances from the host star have never been previously detected at any wavelength for either disk, illustrating the utility of visible-wavelength observations in probing the distribution of small dust grains at large angular separations.



قيم البحث

اقرأ أيضاً

We present observations of disc-bearing stars in Upper Scorpius (US) and Upper Centaurus-Lupus (UCL) with moderate resolution spectroscopy in order to determine the influence of multiplicity on disc persistence after ~5-20 Myr. Discs were identified using infra-red (IR) excess from the Wide-field Infra-red Survey Explorer (WISE) survey. Our survey consists of 55 US members and 28 UCL members, using spatial and kinematic information to assign a probability of membership. Spectra are gathered from the ANU 2.3m telescope using the Wide Field Spectrograph (WiFeS) to detect radial velocity variations that indicate the presence of a companion. We identify 2 double-lined spectroscopic binaries, both of which have strong IR excess. We find the binary fraction of disc-bearing stars in US and UCL for periods up to 20 years to be $0.06^{0.07}_{0.02}$ and $0.13^{0.06}_{0.03}$ respectively. Based on the multiplicity of field stars, we obtain an expected binary fraction of $0.12^{0.02}_{0.01}$. The determined binary fractions for disc-bearing stars does not vary significantly from the field, suggesting that the overall lifetime of discs may not differ between single and binary star systems.
Mid-infrared imaging traces the sub-micron and micron sized dust grains in protoplanetary disks and it offers constraints on the geometrical properties of the disks and potential companions, particularly if those companions have circumplanetary disks . We use the VISIR instrument and its upgrade NEAR on the VLT to take new mid-infrared images of five (pre-)transition disks and one circumstellar disk with proposed planets and obtain the deepest resolved mid-infrared observations to date in order to put new constraints on the sizes of the emitting regions of the disks and the presence of possible companions. We derotate and stack the data to find the disk properties. Where available we compare the data to ProDiMo (Protoplanetary Disk Model) radiation thermo-chemical models to achieve a deeper understanding of the underlying physical processes within the disks. We apply the circularised PSF subtraction method to find upper limits on the fluxes of possible companions and model companions with circumplanetary disks. We resolve three of the six disks and calculate position angles, inclinations and (upper limits to) sizes of emission regions in the disks, improving upper limits on two of the unresolved disks. In all cases the majority of the mid-IR emission comes from small inner disks or the hot inner rims of outer disks. We refine the existing ProDiMo HD 100546 model SED fit in the mid-IR by increasing the PAH abundance relative to the ISM, adopting coronene as the representative PAH, and increase the outer cavity radius to 22.3 AU. We produce flux estimates for putative planetary-mass companions and circumplanetary disks, ruling out the presence of planetary-mass companions with $L > 0.0028 L_{odot}$ for $a > 180$ AU in the HD 100546 system. Upper limits of 0.5 mJy-30 mJy are obtained at 8 $mu$m-12 $mu$m for potential companions in the different disks.
We aim to understand the effect of stellar evolution on the evolution of protoplanetary disks. We focus in particular on the disk evolution around intermediate-mass (IM) stars, which evolve more rapidly than low-mass ones. We numerically solve the lo ng-term evolution of disks around 0.5-5 solar-mass stars considering viscous accretion and photoevaporation (PE) driven by stellar far-ultraviolet (FUV), extreme-ultraviolet (EUV), and X-ray emission. We also take stellar evolution into account and consider the time evolution of the PE rate. We find that the FUV, EUV, and X-ray luminosities of IM stars evolve by orders of magnitude within a few Myr along with the time evolution of stellar structure, stellar effective temperature, or accretion rate. Therefore, the PE rate also evolves with time by orders of magnitude, and we conclude that stellar evolution is crucial for the disk evolution around IM stars.
80 - Min-Kai Lin 2017
Small solids embedded in gaseous protoplanetary disks are subject to strong dust-gas friction. Consequently, tightly-coupled dust particles almost follow the gas flow. This near conservation of dust-to-gas ratio along streamlines is analogous to the near conservation of entropy along flows of (dust-free) gas with weak heating and cooling. We develop this thermodynamic analogy into a framework to study dusty gas dynamics in protoplanetary disks. We show that an isothermal dusty gas behaves like an adiabatic pure gas; and that finite dust-gas coupling may be regarded as an effective heating/cooling. We exploit this correspondence to deduce that 1) perfectly coupled, thin dust layers cannot cause axisymmetric instabilities; 2) radial dust edges are unstable if the dust is vertically well-mixed; 3) the streaming instability necessarily involves a gas pressure response that lags behind dust density; 4) dust-loading introduces buoyancy forces that generally stabilizes the vertical shear instability associated with global radial temperature gradients. We also discuss dusty analogs of other hydrodynamic processes (e.g. Rossby wave instability, convective overstability, and zombie vortices), and how to simulate dusty protoplanetary disks with minor tweaks to existing codes for pure gas dynamics.
Ices are an important constituent of protoplanetary disks. New observational facilities, notably JWST, will greatly enhance our view of disk ices by measuring their infrared spectral features. We present a suite of models to complement these upcoming observations. Our models use a kinetics-based gas-grain chemical evolution code to simulate the distribution of ices in a disk, followed by a radiative transfer code using a subset of key ice species to simulate the observations. We present models reflecting both molecular inheritance and chemical reset initial conditions. We find that H$_2$O, CO$_2$, and CH$_3$OH near-to-mid-IR absorption features are readily observable in disk-integrated spectra of highly-inclined disks while CO, NH$_3$, and CH$_4$ ice do not show prominent features. CH$_3$OH ice has low abundance and is not observable in the reset model, making this species an excellent diagnostic of initial chemical conditions. CO$_2$ ice features exhibit the greatest change over disk lifetime: decreasing and increasing for the inheritance and reset models, respectively. Spatially-resolved spectra of edge-on disks, possible with JWSTs integral field unit observing modes, are ideal for constraining the vertical distribution of ices and may be able to isolate features from ices closer to the midplane (e.g., CO) given sufficient sensitivity. Spatially-resolved spectra of face-on disks can trace scattered-light features from H$_2$O, CO$_2$, and CH$_3$OH, plus CO and CH$_4$ from the outermost regions. We additionally simulate far-IR H$_2$O ice emission features and find they are strongest for disks viewed face-on.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا