ترغب بنشر مسار تعليمي؟ اضغط هنا

A thermodynamic view of dusty protoplanetary disks

81   0   0.0 ( 0 )
 نشر من قبل Min-Kai Lin
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Min-Kai Lin




اسأل ChatGPT حول البحث

Small solids embedded in gaseous protoplanetary disks are subject to strong dust-gas friction. Consequently, tightly-coupled dust particles almost follow the gas flow. This near conservation of dust-to-gas ratio along streamlines is analogous to the near conservation of entropy along flows of (dust-free) gas with weak heating and cooling. We develop this thermodynamic analogy into a framework to study dusty gas dynamics in protoplanetary disks. We show that an isothermal dusty gas behaves like an adiabatic pure gas; and that finite dust-gas coupling may be regarded as an effective heating/cooling. We exploit this correspondence to deduce that 1) perfectly coupled, thin dust layers cannot cause axisymmetric instabilities; 2) radial dust edges are unstable if the dust is vertically well-mixed; 3) the streaming instability necessarily involves a gas pressure response that lags behind dust density; 4) dust-loading introduces buoyancy forces that generally stabilizes the vertical shear instability associated with global radial temperature gradients. We also discuss dusty analogs of other hydrodynamic processes (e.g. Rossby wave instability, convective overstability, and zombie vortices), and how to simulate dusty protoplanetary disks with minor tweaks to existing codes for pure gas dynamics.



قيم البحث

اقرأ أيضاً

We present new Herschel PACS observations of 32 T Tauri stars in the young ($sim$3 Myr) $sigma$ Ori cluster. Most of our objects are K & M stars with large excesses at 24 $mu$m. We used irradiated accretion disk models of DAlessio et al. (2006) to co mpare their spectral energy distributions with our observational data. We arrive at the following six conclusions. (i) The observed disks are consistent with irradiated accretion disks systems. (ii) Most of our objects (60%) can be explained by significant dust depletion from the upper disk layers. (iii) Similarly, 61% of our objects can be modeled with large disk sizes ($rm R_{rm d} geq$ 100 AU). (iv) The masses of our disks range between 0.03 to 39 $rm M_{Jup}$, where 35% of our objects have disk masses lower than 1 Jupiter. Although these are lower limits, high mass ($>$ 0.05 M$_{odot}$) disks, which are present e.g, in Taurus, are missing. (v) By assuming a uniform distribution of objects around the brightest stars at the center of the cluster, we found that 80% of our disks are exposed to external FUV radiation of $300 leq G_{0} leq 1000$, which can be strong enough to photoevaporate the outer edges of the closer disks. (vi) Within 0.6 pc from $sigma$ Ori we found forbidden emission lines of [NII] in the spectrum of one of our large disk (SO662), but no emission in any of our small ones. This suggests that this object may be an example of a photoevaporating disk.
103 - M. Tazzari , L. Testi , A. Natta 2017
The formation of planets strongly depends on the total amount as well as on the spatial distribution of solids in protoplanetary disks. Thanks to the improvements in resolution and sensitivity provided by ALMA, measurements of the surface density of mm-sized grains are now possible on large samples of disks. Such measurements provide statistical constraints that can be used to inform our understanding of the initial conditions of planet formation. We analyze spatially resolved observations of 36 protoplanetary disks in the Lupus star forming complex from our ALMA survey at 890 micron, aiming to determine physical properties such as the dust surface density, the disk mass and size and to provide a constraint on the temperature profile. We fit the observations directly in the uv-plane using a two-layer disk model that computes the 890 micron emission by solving the energy balance at each disk radius. For 22 out of 36 protoplanetary disks we derive robust estimates of their physical properties. The sample covers stellar masses between ~0.1 and ~2 Solar masses, and we find no trend between the average disk temperatures and the stellar parameters. We find, instead, a correlation between the integrated sub-mm flux (a proxy for the disk mass) and the exponential cut-off radii (a proxy of the disk size) of the Lupus disks. Comparing these results with observations at similar angular resolution of Taurus-Auriga/Ophiuchus disks found in literature and scaling them to the same distance, we observe that the Lupus disks are generally fainter and larger at a high level of statistical significance. Considering the 1-2 Myr age difference between these regions, it is possible to tentatively explain the offset in the disk mass/disk size relation with viscous spreading, however with the current measurements other mechanisms cannot be ruled out.
459 - O. Dionatos 2019
Consistent modeling of protoplanetary disks requires the simultaneous solution of both continuum and line radiative transfer, heating/cooling balance between dust and gas and, of course, chemistry. Such models depend on panchromatic observations that can provide a complete description of the physical and chemical properties and energy balance of protoplanetary systems. Along these lines we present a homogeneous, panchromatic collection of data on a sample of 85 T Tauri and Herbig Ae objects for which data cover a range from X-rays to centimeter wavelengths. Datasets consist of photometric measurements, spectra, along with results from the data analysis such as line fluxes from atomic and molecular transitions. Additional properties resulting from modeling of the sources such as disc mass and shape parameters. dust size and PAH properties are also provided for completeness. Targets were selected based on their properties data availability. Data from more than 50 different telescopes and facilities were retrieved and combined in homogeneous datasets directly from public data archives or after being extracted from more than 100 published articles. X-ray data for a subset of 56 sources represent an exception as they were reduced from scratch and are presented here for the first time. Compiled datasets along with a subset of continuum and emission-line models are stored in a dedicated database and distributed through a publicly accessible online system. All datasets contain metadata descriptors that allow to backtrack them to their original resources. The graphical user interface of the online system allows the user to visually inspect individual objects but also compare between datasets and models. It also offers to the user the possibility to download any of the stored data and metadata for further processing.
Secular gravitational instability (GI) is one of the promising mechanisms for creating annular substructures and planetesimals in protoplanetary disks. We perform numerical simulations of the secular GI in a radially extended disk with inward driftin g dust grains. The results show that, even in the presence of the dust diffusion, the dust rings form via the secular GI while the dust grains are moving inward, and the dust surface density increases by a factor of ten. Once the secular GI develops into a nonlinear regime, the total mass of the resultant rings can be a significant fraction of the dust disk mass. In this way, a large amount of drifting dust grains can be collected in the dusty rings and stored for planetesimal formation. In contrast to the emergence of remarkable dust substructures, the secular GI does not create significant gas substructures. This result indicates that observations of a gas density profile near the disk midplane enable us to distinguish the mechanisms for creating the annular substructures in the observed disks. The resultant rings start decaying once they enter the inner region stable to the secular GI. Since the ring-gap contrast smoothly decreases, it seems possible that the rings are observed even in the stable region. We also discuss the likely outcome of the non-linear growth and indicate the possibility that a significantly developed region of the secular GI may appear as a gap-like substructure in dust continuum emission since dust growth into larger solid bodies and planetesimal formation reduce the total emissivity.
82 - Xue-Ning Bai 2016
A global evolution picture of protoplanetary disks (PPDs) is key to understanding almost every aspect of planet formation, where standard alpha-disk models have been constantly employed for its simplicity. In the mean time, disk mass loss has been co nventionally attributed to photoevaporation, which controls disk dispersal. However, a paradigm shift towards accretion driven by magnetized disk winds has been realized in the recent years, thanks to studies of non-ideal magneto-hydrodynamic effects in PPDs. I present a framework of global PPD evolution aiming to incorporate these advances, highlighting the role of wind-driven accretion and wind mass loss. Disk evolution is found to be largely dominated by wind-driven processes, and viscous spreading is suppressed. The timescale of disk evolution is controlled primarily by the amount of external magnetic flux threading the disks, and how rapidly the disk loses the flux. Rapid disk dispersal can be achieved if the disk is able to hold most of its magnetic flux during the evolution. In addition, because wind launching requires sufficient level of ionization at disk surface (mainly via external far-UV radiation), wind kinematics is also affected by far-UV penetration depth and disk geometry. For typical disk lifetime of a few Myrs, the disk loses approximately the same amount of mass through the wind as through accretion onto the protostar, and most of the wind mass loss proceeds from the outer disk via a slow wind. Fractional wind mass loss increases with increasing disk lifetime. Significant wind mass loss likely substantially enhances the dust to gas mass ratio, and promotes planet formation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا