ترغب بنشر مسار تعليمي؟ اضغط هنا

Bridging the gap between protoplanetary and debris disks: separate evolution of millimeter and micrometer-sized dust

84   0   0.0 ( 0 )
 نشر من قبل Arnaud Michel
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The connection between the nature of a protoplanetary disk and that of a debris disk is not well understood. Dust evolution, planet formation, and disk dissipation likely play a role in the processes involved. We aim to reconcile both manifestations of dusty circumstellar disks through a study of optically thin Class III disks and how they correlate to younger and older disks. In this work, we collect literature and ALMA archival millimeter fluxes for 85 disks (8%) of all Class III disks across nearby star-forming regions. We derive millimeter-dust masses $M_{text{dust}}$ and compare these with Class II and debris disk samples in the context of excess infrared luminosity, accretion rate, and age. The mean $M_{text{dust}}$ of Class III disks is $0.29 pm 0.19~M_{oplus}$. We propose a new evolutionary scenario wherein radial drift is very efficient for non-structured disks during the Class II phase resulting in a rapid decrease of $M_{text{dust}}$. However, we find long infrared protoplanetary disk timescales of ${sim}$8~Myr, which are consistent with overall slow disk evolution. In structured disks, the presence of dust traps allows for the formation of planetesimal belts at large radii, such as those observed in debris disks. We propose therefore that the planetesimal belts in debris disks are the result of dust traps in structured disks, whereas protoplanetary disks without dust traps decrease in dust mass through radial drift and are therefore undetectable as debris disks after the gas has dissipated. These results provide a hypothesis for a novel view of disk evolution.



قيم البحث

اقرأ أيضاً

We investigate the simultaneous evolution of dust and gas density profiles at a radial pressure bump located in a protoplanetary disk. If dust particles are treated as test particles, a radial pressure bump traps dust particles that drift radially in ward. As the dust particles become more concentrated at the gas pressure bump, however, the drag force from dust to gas (back-reaction), which is ignored in a test-particle approach, deforms the pressure bump. We find that the pressure bump is completely deformed by the back-reaction when the dust-to-gas mass ratio reaches $sim 1$ for a slower bump restoration. The direct gravitational instability of dust particles is inhibited by the bump destruction. In the dust-enriched region, the radial pressure support becomes $sim 10-100$ times lower than the global value set initially. Although the pressure bump is a favorable place for streaming instability (SI), the flattened pressure gradient inhibits SI from forming large particle clumps corresponding to $100-1000$ km sized bodies, which has been previously proposed. If SI occurs there, the dust clumps formed would be $10-100$ times smaller, that is, of about $1 - 100$ km.
Recent ALMA surveys of protoplanetary disks have shown that for most disks the extent of the gas emission is greater than the extent of the thermal emission of the millimeter-sized dust. Both line optical depth and the combined effect of radially dep endent grain growth and radial drift may contribute to this observed effect. For a sample of 10 disks from the Lupus survey we investigate how well dust-based models without radial dust evolution reproduce the observed 12CO outer radius, and determine whether radial dust evolution is required to match the observed gas-dust size difference. We used the thermochemical code DALI to obtain 12CO synthetic emission maps and measure gas and dust outer radii (Rco, Rmm) using the same methods as applied to the observations, which were compared to observations on a source-by-source basis. For 5 disks we find that the observed gas-dust size difference is larger than the gas-dust size difference due to optical depth, indicating that we need both dust evolution and optical depth effects to explain the observed gas-dust size difference. For the other 5 disks the observed gas-dust size difference can be explained using only line optical depth effects. We also identify 6 disks not included in our initial sample but part of a survey of the same star-forming region that show significant 12CO emission beyond 4 x Rmm. These disks, for which no Rco is available, likely have gas-dust size differences greater than 4 and are difficult to explain without substantial dust evolution. Our results suggest that radial drift and grain growth are common features among both bright and fain disks. The effects of radial drift and grain growth can be observed in disks where the dust and gas radii are significantly different, while more detailed models and deeper observations are needed to see this effect in disks with smaller differences.
Theoretical models of the ionization state in protoplanetary disks suggest the existence of large areas with low ionization and weak coupling between the gas and magnetic fields. In this regime hydrodynamical instabilities may become important. In th is work we investigate the gas and dust structure and dynamics for a typical T Tauri system under the influence of the vertical shear instability (VSI). We use global 3D radiation hydrodynamics simulations covering all $360^circ$ of azimuth with embedded particles of 0.1 and 1mm size, evolved for 400 orbits. Stellar irradiation heating is included with opacities for 0.1- to 10-$mu$m-sized dust. Saturated VSI turbulence produces a stress-to-pressure ratio of $alpha simeq 10^{-4}$. The value of $alpha$ is lowest within 30~au of the star, where thermal relaxation is slower relative to the orbital period and approaches the rate below which VSI is cut off. The rise in $alpha$ from 20 to 30~au causes a dip in the surface density near 35~au, leading to Rossby wave instability and the generation of a stationary, long-lived vortex spanning about 4~au in radius and 40~au in azimuth. Our results confirm previous findings that mm size grains are strongly vertically mixed by the VSI. The scale height aspect ratio for 1mm grains is determined to be 0.037, much higher than the value $H/r=0.007$ obtained from millimeter-wave observations of the HL~Tau system. The measured aspect ratio is better fit by non-ideal MHD models. In our VSI turbulence model, the mm grains drift radially inwards and many are trapped and concentrated inside the vortex. The turbulence induces a velocity dispersion of $sim 12$~m/s for the mm grains, indicating that grain-grain collisions could lead to fragmentation.
We present a novel method for determining the surface density of protoplanetary disks through consideration of disk dust lines which indicate the observed disk radial scale at different observational wavelengths. This method relies on the assumption that the processes of particle growth and drift control the radial scale of the disk at late stages of disk evolution such that the lifetime of the disk is equal to both the drift timescale and growth timescale of the maximum particle size at a given dust line. We provide an initial proof of concept of our model through an application to the disk TW Hya and are able to estimate the disk dust-to-gas ratio, CO abundance, and accretion rate in addition to the total disk surface density. We find that our derived surface density profile and dust-to-gas ratio are consistent with the lower limits found through measurements of HD gas. The CO ice line also depends on surface density through grain adsorption rates and drift and we find that our theoretical CO ice line estimates have clear observational analogues. We further apply our model to a large parameter space of theoretical disks and find three observational diagnostics that may be used to test its validity. First we predict that the dust lines of disks other than TW Hya will be consistent with the normalized CO surface density profile shape for those disks. Second, surface density profiles that we derive from disk ice lines should match those derived from disk dust lines. Finally, we predict that disk dust and ice lines will scale oppositely, as a function of surface density, across a large sample of disks.
We present observations of the HD 15115 debris disk from ALMA at 1.3 mm that capture this intriguing system with the highest resolution ($0.!!^{primeprime}6$ or $29$ AU) at millimeter wavelengths to date. This new ALMA image shows evidence for two ri ngs in the disk separated by a cleared gap. By fitting models directly to the observed visibilities within a MCMC framework, we are able to characterize the millimeter continuum emission and place robust constraints on the disk structure and geometry. In the best-fit model of a power law disk with a Gaussian gap, the disk inner and outer edges are at $43.9pm5.8$ AU ($0.!!^{primeprime}89pm0.!!^{primeprime}12$) and $92.2pm2.4$ AU ($1.!!^{primeprime}88pm0.!!^{primeprime}49$), respectively, with a gap located at $58.9pm4.5$~AU ($1.!!^{primeprime}2pm0.!!^{primeprime}10$) with a fractional depth of $0.88pm0.10$ and a width of $13.8pm5.6$ AU ($0.!!^{primeprime}28pm0.!!^{primeprime}11$). Since we do not see any evidence at millimeter wavelengths for the dramatic east-west asymmetry seen in scattered light, we conclude that this feature most likely results from a mechanism that only affects small grains. Using dynamical modeling and our constraints on the gap properties, we are able to estimate a mass for the possible planet sculpting the gap to be $0.16pm0.06$ $M_text{Jup}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا