ترغب بنشر مسار تعليمي؟ اضغط هنا

Dust and gas density evolution at a radial pressure bump in protoplanetary disks

106   0   0.0 ( 0 )
 نشر من قبل Tetsuo Taki
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the simultaneous evolution of dust and gas density profiles at a radial pressure bump located in a protoplanetary disk. If dust particles are treated as test particles, a radial pressure bump traps dust particles that drift radially inward. As the dust particles become more concentrated at the gas pressure bump, however, the drag force from dust to gas (back-reaction), which is ignored in a test-particle approach, deforms the pressure bump. We find that the pressure bump is completely deformed by the back-reaction when the dust-to-gas mass ratio reaches $sim 1$ for a slower bump restoration. The direct gravitational instability of dust particles is inhibited by the bump destruction. In the dust-enriched region, the radial pressure support becomes $sim 10-100$ times lower than the global value set initially. Although the pressure bump is a favorable place for streaming instability (SI), the flattened pressure gradient inhibits SI from forming large particle clumps corresponding to $100-1000$ km sized bodies, which has been previously proposed. If SI occurs there, the dust clumps formed would be $10-100$ times smaller, that is, of about $1 - 100$ km.



قيم البحث

اقرأ أيضاً

Theoretical models of the ionization state in protoplanetary disks suggest the existence of large areas with low ionization and weak coupling between the gas and magnetic fields. In this regime hydrodynamical instabilities may become important. In th is work we investigate the gas and dust structure and dynamics for a typical T Tauri system under the influence of the vertical shear instability (VSI). We use global 3D radiation hydrodynamics simulations covering all $360^circ$ of azimuth with embedded particles of 0.1 and 1mm size, evolved for 400 orbits. Stellar irradiation heating is included with opacities for 0.1- to 10-$mu$m-sized dust. Saturated VSI turbulence produces a stress-to-pressure ratio of $alpha simeq 10^{-4}$. The value of $alpha$ is lowest within 30~au of the star, where thermal relaxation is slower relative to the orbital period and approaches the rate below which VSI is cut off. The rise in $alpha$ from 20 to 30~au causes a dip in the surface density near 35~au, leading to Rossby wave instability and the generation of a stationary, long-lived vortex spanning about 4~au in radius and 40~au in azimuth. Our results confirm previous findings that mm size grains are strongly vertically mixed by the VSI. The scale height aspect ratio for 1mm grains is determined to be 0.037, much higher than the value $H/r=0.007$ obtained from millimeter-wave observations of the HL~Tau system. The measured aspect ratio is better fit by non-ideal MHD models. In our VSI turbulence model, the mm grains drift radially inwards and many are trapped and concentrated inside the vortex. The turbulence induces a velocity dispersion of $sim 12$~m/s for the mm grains, indicating that grain-grain collisions could lead to fragmentation.
Ultraviolet spectra of protoplanetary disks trace distributions of warm gas at radii where rocky planets form. We combine HST-COS observations of H2 and CO emission from 12 classical T Tauri stars to more extensively map inner disk surface layers, wh ere gas temperature distributions allow radially stratified fluorescence from the two species. We calculate empirical emitting radii for each species under the assumption that the line widths are entirely set by Keplerian broadening, demonstrating that the CO fluorescence originates further from the stars (r ~ 20 AU) than the H2 (r ~ 0.8 AU). This is supported by 2-D radiative transfer models, which show that the peak and outer radii of the CO flux distributions generally extend further into the outer disk than the H2. These results also indicate that additional sources of LyA photons remain unaccounted for, requiring more complex models to fully reproduce the molecular gas emission. As a first step, we confirm that the morphologies of the UV-CO bands and LyA radiation fields are significantly correlated and discover that both trace the degree of dust disk evolution. The UV tracers appear to follow the same sequence of disk evolution as forbidden line emission from jets and winds, as the observed LyA profiles transition between dominant red wing and dominant blue wing shapes when the high-velocity optical emission disappears. Our results suggest a scenario where UV radiation fields, disk winds and jets, and molecular gas evolve in harmony with the dust disks throughout their lifetimes.
Dust evolution in protoplanetary disks from small dust grains to pebbles is key to the planet formation process. The gas in protoplanetary disks should influence the vertical distribution of small dust grains ($sim$1 $mu m$) in the disk.Utilizing arc hival near-infrared polarized light and millimeter observations, we can measure the scale height and the flare parameter $beta$ of the small dust grain scattering surface and $^{12}$CO gas emission surface for three protoplanetary disks IM Lup, HD 163296, and HD 97048 (CU Cha). For two systems, IM Lup and HD 163296, the $^{12}$CO gas and small dust grains at small radii from the star have similar heights but at larger radii ($>$100 au) the dust grain scattering surface height is lower than the $^{12}$CO gas emission surface height. In the case of HD 97048, the small dust grain scattering surface has similar heights to the $^{12}$CO gas emission surface at all radii. We ran a protoplanetary disk radiative transfer model of a generic protoplanetary disk with TORUS and showed that there is no difference between the observed scattering surface and $^{12}$CO emission surface. We also performed analytical modeling of the system and found that gas-to-dust ratios larger than 100 could explain the observed difference in IM Lup and HD 163296. This is the first direct comparison of observations of gas and small dust grain heights distribution in protoplanetary disks. Future observations of gas emission and near-infrared scattered light instruments are needed to look for similar trends in other protoplanetary disks.
430 - P. Woitke , M. Min , C. Pinte 2015
We propose a set of standard assumptions for the modelling of Class II and III protoplanetary disks, which includes detailed continuum radiative transfer, thermo-chemical modelling of gas and ice, and line radiative transfer from optical to cm wavele ngths. We propose new standard dust opacities for disk models, we present a simplified treatment of PAHs sufficient to reproduce the PAH emission features, and we suggest using a simple treatment of dust settling. We roughly adjust parameters to obtain a model that predicts typical Class II T Tauri star continuum and line observations. We systematically study the impact of each model parameter (disk mass, disk extension and shape, dust settling, dust size and opacity, gas/dust ratio, etc.) on all continuum and line observables, in particular on the SED, mm-slope, continuum visibilities, and emission lines including [OI] 63um, high-J CO lines, (sub-)mm CO isotopologue lines, and CO fundamental ro-vibrational lines. We find that evolved dust properties (large grains) often needed to fit the SED, have important consequences for disk chemistry and heating/cooling balance, leading to stronger emission lines in general. Strong dust settling and missing disk flaring have similar effects on continuum observations, but opposite effects on far-IR gas emission lines. PAH molecules can shield the gas from stellar UV radiation because of their strong absorption and negligible scattering opacities. The observable millimetre-slope of the SED can become significantly more gentle in the case of cold disk midplanes, which we find regularly in our T Tauri models. We propose to use line observations of robust chemical tracers of the gas, such as O, CO, and H2, as additional constraints to determine some key properties of the disks, such as disk shape and mass, opacities, and the dust/gas ratio, by simultaneously fitting continuum and line observations.
Aims: We explore the long-term evolution of young protoplanetary disks with different approaches to computing the thermal structure determined by various cooling and heating processes in the disk and its surroundings. Methods: Numerical hydrodynamics simulations in the thin-disk limit were complemented with three thermal evolution schemes: a simplified $beta$-cooling approach with and without irradiation, in which the rate of disk cooling is proportional to the local dynamical time, a fiducial model with equal dust and gas temperatures calculated taking viscous heating, irradiation, and radiative cooling into account, and also a more sophisticated approach allowing decoupled dust and gas temperatures. Results: We found that the gas temperature may significantly exceed that of dust in the outer regions of young disks thanks to additional compressional heating caused by the infalling envelope material in the early stages of disk evolution and slow collisional exchange of energy between gas and dust in low-density disk regions. The outer envelope however shows an inverse trend with the gas temperatures dropping below that of dust. The global disk evolution is only weakly sensitive to temperature decoupling. Nevertheless, separate dust and gas temperatures may affect the chemical composition, dust evolution, and disk mass estimates. Constant-$beta$ models without stellar and background irradiation fail to reproduce the disk evolution with more sophisticated thermal schemes because of intrinsically variable nature of the $beta$-parameter. Constant-$beta$ models with irradiation can better match the dynamical and thermal evolution, but the agreement is still incomplete. Conclusions: Models allowing separate dust and gas temperatures are needed when emphasis is placed on the chemical or dust evolution in protoplanetary disks, particularly in sub-solar metallicity environments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا