ترغب بنشر مسار تعليمي؟ اضغط هنا

Visual Goal-Step Inference using wikiHow

71   0   0.0 ( 0 )
 نشر من قبل Yue Yang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Understanding what sequence of steps are needed to complete a goal can help artificial intelligence systems reason about human activities. Past work in NLP has examined the task of goal-step inference for text. We introduce the visual analogue. We propose the Visual Goal-Step Inference (VGSI) task, where a model is given a textual goal and must choose which of four images represents a plausible step towards that goal. With a new dataset harvested from wikiHow consisting of 772,277 images representing human actions, we show that our task is challenging for state-of-the-art multimodal models. Moreover, the multimodal representation learned from our data can be effectively transferred to other datasets like HowTo100m, increasing the VGSI accuracy by 15 - 20%. Our task will facilitate multimodal reasoning about procedural events.



قيم البحث

اقرأ أيضاً

We introduce the task of Visual Dialog, which requires an AI agent to hold a meaningful dialog with humans in natural, conversational language about visual content. Specifically, given an image, a dialog history, and a question about the image, the a gent has to ground the question in image, infer context from history, and answer the question accurately. Visual Dialog is disentangled enough from a specific downstream task so as to serve as a general test of machine intelligence, while being grounded in vision enough to allow objective evaluation of individual responses and benchmark progress. We develop a novel two-person chat data-collection protocol to curate a large-scale Visual Dialog dataset (VisDial). VisDial v0.9 has been released and contains 1 dialog with 10 question-answer pairs on ~120k images from COCO, with a total of ~1.2M dialog question-answer pairs. We introduce a family of neural encoder-decoder models for Visual Dialog with 3 encoders -- Late Fusion, Hierarchical Recurrent Encoder and Memory Network -- and 2 decoders (generative and discriminative), which outperform a number of sophisticated baselines. We propose a retrieval-based evaluation protocol for Visual Dialog where the AI agent is asked to sort a set of candidate answers and evaluated on metrics such as mean-reciprocal-rank of human response. We quantify gap between machine and human performance on the Visual Dialog task via human studies. Putting it all together, we demonstrate the first visual chatbot! Our dataset, code, trained models and visual chatbot are available on https://visualdialog.org
Visual relationship detection aims to reason over relationships among salient objects in images, which has drawn increasing attention over the past few years. Inspired by human reasoning mechanisms, it is believed that external visual commonsense kno wledge is beneficial for reasoning visual relationships of objects in images, which is however rarely considered in existing methods. In this paper, we propose a novel approach named Relational Visual-Linguistic Bidirectional Encoder Representations from Transformers (RVL-BERT), which performs relational reasoning with both visual and language commonsense knowledge learned via self-supervised pre-training with multimodal representations. RVL-BERT also uses an effective spatial module and a novel mask attention module to explicitly capture spatial information among the objects. Moreover, our model decouples object detection from visual relationship recognition by taking in object names directly, enabling it to be used on top of any object detection system. We show through quantitative and qualitative experiments that, with the transferred knowledge and novel modules, RVL-BERT achieves competitive results on two challenging visual relationship detection datasets. The source code is available at https://github.com/coldmanck/RVL-BERT.
74 - Fereshteh Sadeghi 2019
Robots should understand both semantics and physics to be functional in the real world. While robot platforms provide means for interacting with the physical world they cannot autonomously acquire object-level semantics without needing human. In this paper, we investigate how to minimize human effort and intervention to teach robots perform real world tasks that incorporate semantics. We study this question in the context of visual servoing of mobile robots and propose DIViS, a Domain Invariant policy learning approach for collision free Visual Servoing. DIViS incorporates high level semantics from previously collected static human-labeled datasets and learns collision free servoing entirely in simulation and without any real robot data. However, DIViS can directly be deployed on a real robot and is capable of servoing to the user-specified object categories while avoiding collisions in the real world. DIViS is not constrained to be queried by the final view of goal but rather is robust to servo to image goals taken from initial robot view with high occlusions without this impairing its ability to maintain a collision free path. We show the generalization capability of DIViS on real mobile robots in more than 90 real world test scenarios with various unseen object goals in unstructured environments. DIViS is compared to prior approaches via real world experiments and rigorous tests in simulation. For supplementary videos, see: href{https://fsadeghi.github.io/DIViS}{https://fsadeghi.github.io/DIViS}
338 - Chi Han , Jiayuan Mao , Chuang Gan 2020
Humans reason with concepts and metaconcepts: we recognize red and green from visual input; we also understand that they describe the same property of objects (i.e., the color). In this paper, we propose the visual concept-metaconcept learner (VCML) for joint learning of concepts and metaconcepts from images and associated question-answer pairs. The key is to exploit the bidirectional connection between visual concepts and metaconcepts. Visual representations provide grounding cues for predicting relations between unseen pairs of concepts. Knowing that red and green describe the same property of objects, we generalize to the fact that cube and sphere also describe the same property of objects, since they both categorize the shape of objects. Meanwhile, knowledge about metaconcepts empowers visual concept learning from limited, noisy, and even biased data. From just a few examples of purple cubes we can understand a new color purple, which resembles the hue of the cubes instead of the shape of them. Evaluation on both synthetic and real-world datasets validates our claims.
Visual captioning aims to generate textual descriptions given images or videos. Traditionally, image captioning models are trained on human annotated datasets such as Flickr30k and MS-COCO, which are limited in size and diversity. This limitation hin ders the generalization capabilities of these models while also rendering them liable to making mistakes. Language models can, however, be trained on vast amounts of freely available unlabelled data and have recently emerged as successful language encoders and coherent text generators. Meanwhile, several unimodal and multimodal fusion techniques have been proven to work well for natural language generation and automatic speech recognition. Building on these recent developments, and with the aim of improving the quality of generated captions, the contribution of our work in this paper is two-fold: First, we propose a generic multimodal model fusion framework for caption generation as well as emendation where we utilize different fusion strategies to integrate a pretrained Auxiliary Language Model (AuxLM) within the traditional encoder-decoder visual captioning frameworks. Next, we employ the same fusion strategies to integrate a pretrained Masked Language Model (MLM), namely BERT, with a visual captioning model, viz. Show, Attend, and Tell, for emending both syntactic and semantic errors in captions. Our caption emendation experiments on three benchmark image captioning datasets, viz. Flickr8k, Flickr30k, and MSCOCO, show improvements over the baseline, indicating the usefulness of our proposed multimodal fusion strategies. Further, we perform a preliminary qualitative analysis on the emended captions and identify error categories based on the type of corrections.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا