ترغب بنشر مسار تعليمي؟ اضغط هنا

Fusion Models for Improved Visual Captioning

194   0   0.0 ( 0 )
 نشر من قبل Marimuthu Kalimuthu
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Visual captioning aims to generate textual descriptions given images or videos. Traditionally, image captioning models are trained on human annotated datasets such as Flickr30k and MS-COCO, which are limited in size and diversity. This limitation hinders the generalization capabilities of these models while also rendering them liable to making mistakes. Language models can, however, be trained on vast amounts of freely available unlabelled data and have recently emerged as successful language encoders and coherent text generators. Meanwhile, several unimodal and multimodal fusion techniques have been proven to work well for natural language generation and automatic speech recognition. Building on these recent developments, and with the aim of improving the quality of generated captions, the contribution of our work in this paper is two-fold: First, we propose a generic multimodal model fusion framework for caption generation as well as emendation where we utilize different fusion strategies to integrate a pretrained Auxiliary Language Model (AuxLM) within the traditional encoder-decoder visual captioning frameworks. Next, we employ the same fusion strategies to integrate a pretrained Masked Language Model (MLM), namely BERT, with a visual captioning model, viz. Show, Attend, and Tell, for emending both syntactic and semantic errors in captions. Our caption emendation experiments on three benchmark image captioning datasets, viz. Flickr8k, Flickr30k, and MSCOCO, show improvements over the baseline, indicating the usefulness of our proposed multimodal fusion strategies. Further, we perform a preliminary qualitative analysis on the emended captions and identify error categories based on the type of corrections.



قيم البحث

اقرأ أيضاً

146 - Jun Chen , Han Guo , Kai Yi 2021
The ability to quickly learn from a small quantity oftraining data widens the range of machine learning applications. In this paper, we propose a data-efficient image captioning model, VisualGPT, which leverages the linguistic knowledge from a large pretrained language model(LM). A crucial challenge is to balance between the use of visual information in the image and prior linguistic knowledge acquired from pretraining. We designed a novel self-resurrecting encoder-decoder attention mechanism to quickly adapt the pretrained LM as the language decoder ona small amount of in-domain training data. The proposed self-resurrecting activation unit produces sparse activations but has reduced susceptibility to zero gradients. We train the proposed model, VisualGPT, on 0.1%, 0.5% and 1% of MSCOCO and Conceptual Captions training data. Under these conditions, we outperform the best baseline model by up to 10.8% CIDEr on MS COCO and upto 5.4% CIDEr on Conceptual Captions. Further, Visual-GPT achieves the state-of-the-art result on IU X-ray, a medical report generation dataset. To the best of our knowledge, this is the first work that improves data efficiency of image captioning by utilizing LM pretrained on unimodal data. Our code is available at: https://github.com/Vision-CAIR/VisualGPT.
This paper presents a detailed study of improving visual representations for vision language (VL) tasks and develops an improved object detection model to provide object-centric representations of images. Compared to the most widely used emph{bottom- up and top-down} model cite{anderson2018bottom}, the new model is bigger, better-designed for VL tasks, and pre-trained on much larger training corpora that combine multiple public annotated object detection datasets. Therefore, it can generate representations of a richer collection of visual objects and concepts. While previous VL research focuses mainly on improving the vision-language fusion model and leaves the object detection model improvement untouched, we show that visual features matter significantly in VL models. In our experiments we feed the visual features generated by the new object detection model into a Transformer-based VL fusion model oscar cite{li2020oscar}, and utilize an improved approach short to pre-train the VL model and fine-tune it on a wide range of downstream VL tasks. Our results show that the new visual features significantly improve the performance across all VL tasks, creating new state-of-the-art results on seven public benchmarks. We will release the new object detection model to public.
In this work, we propose an AI-based method that intends to improve the conventional retinal disease treatment procedure and help ophthalmologists increase diagnosis efficiency and accuracy. The proposed method is composed of a deep neural networks-b ased (DNN-based) module, including a retinal disease identifier and clinical description generator, and a DNN visual explanation module. To train and validate the effectiveness of our DNN-based module, we propose a large-scale retinal disease image dataset. Also, as ground truth, we provide a retinal image dataset manually labeled by ophthalmologists to qualitatively show, the proposed AI-based method is effective. With our experimental results, we show that the proposed method is quantitatively and qualitatively effective. Our method is capable of creating meaningful retinal image descriptions and visual explanations that are clinically relevant.
Deep neural networks have shown striking progress and obtained state-of-the-art results in many AI research fields in the recent years. However, it is often unsatisfying to not know why they predict what they do. In this paper, we address the problem of interpreting Visual Question Answering (VQA) models. Specifically, we are interested in finding what part of the input (pixels in images or words in questions) the VQA model focuses on while answering the question. To tackle this problem, we use two visualization techniques -- guided backpropagation and occlusion -- to find important words in the question and important regions in the image. We then present qualitative and quantitative analyses of these importance maps. We found that even without explicit attention mechanisms, VQA models may sometimes be implicitly attending to relevant regions in the image, and often to appropriate words in the question.
Real-time image captioning, along with adequate precision, is the main challenge of this research field. The present work, Multiple Transformers for Self-Attention Mechanism (MTSM), utilizes multiple transformers to address these problems. The propos ed algorithm, MTSM, acquires region proposals using a transformer detector (DETR). Consequently, MTSM achieves the self-attention mechanism by transferring these region proposals and their visual and geometrical features through another transformer and learns the objects local and global interconnections. The qualitative and quantitative results of the proposed algorithm, MTSM, are shown on the MSCOCO dataset.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا