ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Hopf Algebra of Rooted Trees

209   0   0.0 ( 0 )
 نشر من قبل Shouchuan Zhang
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We find a formula to compute the number of the generators, which generate the $n$-filtered space of Hopf algebra of rooted trees, i.e. the number of equivalent classes of rooted trees with weight $n$. Applying Hopf algebra of rooted trees, we show that the analogue of Andruskiewitsch and Schneiders Conjecture is not true. The Hopf algebra of rooted trees and the enveloping algebra of the Lie algebra of rooted trees are two important examples of Hopf algebras. We give their representation and show that they have not any nonzero integrals. We structure their graded Drinfeld doubles and show that they are local quasitriangular Hopf algebras.



قيم البحث

اقرأ أيضاً

In this paper, we present a Hopf algebra description of a bosonic quantum model, using the elementary combinatorial elements of Bell and Stirling numbers. Our objective in doing this is as follows. Recent studies have revealed that perturbative quant um field theory (pQFT) displays an astonishing interplay between analysis (Riemann zeta functions), topology (Knot theory), combinatorial graph theory (Feynman diagrams) and algebra (Hopf structure). Since pQFT is an inherently complicated study, so far not exactly solvable and replete with divergences, the essential simplicity of the relationships between these areas can be somewhat obscured. The intention here is to display some of the above-mentioned structures in the context of a simple bosonic quantum theory, i.e. a quantum theory of non-commuting operators that do not depend on space-time. The combinatorial properties of these boson creation and annihilation operators, which is our chosen example, may be described by graphs, analogous to the Feynman diagrams of pQFT, which we show possess a Hopf algebra structure. Our approach is based on the quantum canonical partition function for a boson gas.
We construct a three-parameter deformation of the Hopf algebra $LDIAG$. This is the algebra that appears in an expansion in terms of Feynman-like diagrams of the {em product formula} in a simplified version of Quantum Field Theory. This new algebra i s a true Hopf deformation which reduces to $LDIAG$ for some parameter values and to the algebra of Matrix Quasi-Symmetric Functions ($MQS$) for others, and thus relates $LDIAG$ to other Hopf algebras of contemporary physics. Moreover, there is an onto linear mapping preserving products from our algebra to the algebra of Euler-Zagier sums.
In this paper, we first construct the controlling algebras of embedding tensors and Lie-Leibniz triples, which turn out to be a graded Lie algebra and an $L_infty$-algebra respectively. Then we introduce representations and cohomologies of embedding tensors and Lie-Leibniz triples, and show that there is a long exact sequence connecting various cohomologies. As applications, we classify infinitesimal deformations and central extensions using the second cohomology groups. Finally, we introduce the notion of a homotopy embedding tensor which will induce a Leibniz$_infty$-algebra. We realize Kotov and Strobls construction of an $L_infty$-algebra from an embedding tensor, to a functor from the category of homotopy embedding tensors to that of Leibniz$_infty$-algebras, and a functor further to that of $L_infty$-algebras.
The $(4+4)$-dimensional $kappa$-deformed quantum phase space as well as its $(10+10)$-dimensional covariant extension by the Lorentz sector can be described as Heisenberg doubles: the $(10+10)$-dimensional quantum phase space is the double of $D=4$ $ kappa$-deformed Poincare Hopf algebra $mathbb{H}$ and the standard $(4+4)$-dimensional space is its subalgebra generated by $kappa$-Minkowski coordinates $hat{x}_mu$ and corresponding commuting momenta $hat{p}_mu$. Every Heisenberg double appears as the total algebra of a Hopf algebroid over a base algebra which is in our case the coordinate sector. We exhibit the details of this structure, namely the corresponding right bialgebroid and the antipode map. We rely on algebraic methods of calculation in Majid-Ruegg bicrossproduct basis. The target map is derived from a formula by J-H. Lu. The coproduct takes values in the bimodule tensor product over a base, what is expressed as the presence of coproduct gauge freedom.
We introduce quantum Markov states (QMS) in a general tree graph $G= (V, E)$, extending the Cayley trees case. We investigate the Markov property w.r.t. the finer structure of the considered tree. The main result of this paper concerns the diagonaliz ability of a locally faithful QMS $varphi$ on a UHF-algebra $mathcal A_V$ over the considered tree by means of a suitable conditional expectation into a maximal abelian subalgebra. Namely, we prove the existence of a Umegaki conditional expectation $mathfrak E : mathcal A_V to mathcal D_V$ such that $$varphi = varphi_{lceil mathcal D_V}circ mathfrak E.$$ Moreover, we clarify the Markovian structure of the associated classical measure on the spectrum of the diagonal algebra $mathcal D_V$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا