ﻻ يوجد ملخص باللغة العربية
Often topological classes of one-dimensional dynamical systems are finite codimension smooth manifolds. We describe a method to prove this sort of statement that we believe can be applied in many settings. In this work we will implement it for piecewise expanding maps. The most important step will be the identification of infinitesimal deformations with primitives of Birkhoff sums (up to addition of a Lipschitz function), that allows us to use the ergodic properties of piecewise expanding maps to study the regularity of infinitesimal deformations.
We study Birkhoff sums as distributions. We obtain regularity results on such distributions for various dynamical systems with hyperbolicity, as hyperbolic linear maps on the torus and piecewise expanding maps on the interval. We also give some appli
We establish two precise asymptotic results on the Birkhoff sums for dynamical systems. These results are parallel to that on the arithmetic sums of independent and identically distributed random variables previously obtained by Hsu and Robbins, ErdH
We establish quantitative results for the statistical be-ha-vi-our of emph{infinite systems}. We consider two kinds of infinite system: i) a conservative dynamical system $(f,X,mu)$ preserving a $sigma$-finite measure $mu$ such that $mu(X)=infty$; ii
This paper is aimed at a detailed study of the multifractal analysis of the so-called divergence points in the system of $beta$-expansions. More precisely, let $([0,1),T_{beta})$ be the $beta$-dynamical system for a general $beta>1$ and $psi:[0,1]map
This paper is devoted to study multifractal analysis of quotients of Birkhoff averages for countable Markov maps. We prove a variational principle for the Hausdorff dimension of the level sets. Under certain assumptions we are able to show that the s