ترغب بنشر مسار تعليمي؟ اضغط هنا

Multifractal analysis for quotients of Birkhoff sums for countable Markov maps

137   0   0.0 ( 0 )
 نشر من قبل Thomas Jordan
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper is devoted to study multifractal analysis of quotients of Birkhoff averages for countable Markov maps. We prove a variational principle for the Hausdorff dimension of the level sets. Under certain assumptions we are able to show that the spectrum varies analytically in parts of its domain. We apply our results to show that the Birkhoff spectrum for the Manneville-Pomeau map can be discontinuous, showing the remarkable differences with the uniformly hyperbolic setting. We also obtain results describing the Birkhoff spectrum of suspension flows. Examples involving continued fractions are also given.



قيم البحث

اقرأ أيضاً

For a Markov map of an interval or the circle with countably many branches and finitely many neutral periodic points, we establish conditional variational formulas for the mixed multifractal spectra of Birkhoff averages of countably many observables, in terms of the Hausdorff dimension of invariant probability measures. Using our results, we are able to exhibit new fractal-geometric results for backward continued fraction expansions of real numbers, answering in particular a question of Pollicott. Moreover, we establish formulas for multi-cusp winding spectra for the Bowen-Series maps associated with finitely generated free Fuchsian groups with parabolic elements.
For piecewise monotone interval maps we look at Birkhoff spectra for regular potential functions. This means considering the Hausdorff dimension of the set of points for which the Birkhoff average of the potential takes a fixed value. In the uniforml y hyperbolic case we obtain complete results, in the case with parabolic behaviour we are able to describe the part of the sets where the lower Lyapunov exponent is positive. In addition we give some lower bounds on the full spectrum in this case. This is an extension of work of Hofbauer on the entropy and Lyapunov spectra.
We establish two precise asymptotic results on the Birkhoff sums for dynamical systems. These results are parallel to that on the arithmetic sums of independent and identically distributed random variables previously obtained by Hsu and Robbins, ErdH {o}s, Heyde. We apply our results to the Gauss map and obtain new precise asymptotics in the theorem of Levy on the regular continued fraction expansion of irrational numbers in $(0,1)$.
This paper is aimed at a detailed study of the multifractal analysis of the so-called divergence points in the system of $beta$-expansions. More precisely, let $([0,1),T_{beta})$ be the $beta$-dynamical system for a general $beta>1$ and $psi:[0,1]map stomathbb{R}$ be a continuous function. Denote by $textsf{A}(psi,x)$ all the accumulation points of $Big{frac{1}{n}sum_{j=0}^{n-1}psi(T^jx): nge 1Big}$. The Hausdorff dimensions of the sets $$Big{x:textsf{A}(psi,x)supset[a,b]Big}, Big{x:textsf{A}(psi,x)=[a,b]Big}, Big{x:textsf{A}(psi,x)subset[a,b]Big}$$ i.e., the points for which the Birkhoff averages of $psi$ do not exist but behave in a certain prescribed way, are determined completely for any continuous function $psi$.
In this paper, we study the topological spectrum of weighted Birkhoff averages over aperiodic and irreducible subshifts of finite type. We show that for a uniformly continuous family of potentials, the spectrum is continuous and concave over its doma in. In case of typical weights with respect to some ergodic quasi-Bernoulli measure, we determine the spectrum. Moreover, in case of full shift and under the assumption that the potentials depend only on the first coordinate, we show that our result is applicable for regular weights, like Mobius sequence.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا