ﻻ يوجد ملخص باللغة العربية
In this paper, we first consider a class of expanding flows of closed, smooth, star-shaped hypersurface in Euclidean space $mathbb{R}^{n+1}$ with speed $u^alpha f^{-beta}$, where $u$ is the support function of the hypersurface, $f$ is a smooth, symmetric, homogenous of degree one, positive function of the principal curvatures of the hypersurface on a convex cone. For $alpha le 0<betale 1-alpha$, we prove that the flow has a unique smooth solution for all time, and converges smoothly after normalization, to a sphere centered at the origin. In particular, the results of Gerhardt cite{GC3} and Urbas cite{UJ2} can be recovered by putting $alpha=0$ and $beta=1$ in our first result. If the initial hypersurface is convex, this is our previous work cite{DL}. If $alpha le 0<beta< 1-alpha$ and the ambient space is hyperbolic space $mathbb{H}^{n+1}$, we prove that the flow $frac{partial X}{partial t}=(u^alpha f^{-beta}-eta u) u$ has a longtime existence and smooth convergence to a coordinate slice. The flow in $mathbb{H}^{n+1}$ is equivalent (up to an isomorphism) to a re-parametrization of the original flow in $mathbb{R}^{n+1}$ case. Finally, we find a family of monotone quantities along the flows in $mathbb{R}^{n+1}$. As applications, we give a new proof of a family of inequalities involving the weighted integral of $k$th elementary symmetric function for $k$-convex, star-shaped hypersurfaces, which is an extension of the quermassintegral inequalities in cite{GL2}.
In this paper, we consider an expanding flow of closed, smooth, uniformly convex hypersurface in Euclidean mathbb{R}^{n+1} with speed u^alpha f^beta (alpha, betainmathbb{R}^1), where u is support function of the hypersurface, f is a smooth, symmetric
We consider the quermassintegral preserving flow of closed emph{h-convex} hypersurfaces in hyperbolic space with the speed given by any positive power of a smooth symmetric, strictly increasing, and homogeneous of degree one function $f$ of the princ
This paper concerns closed hypersurfaces of dimension $n(geq 2)$ in the hyperbolic space ${mathbb{H}}_{kappa}^{n+1}$ of constant sectional curvature $kappa$ evolving in direction of its normal vector, where the speed is given by a power $beta (geq 1/
We study the uniqueness of horospheres and equidistant spheres in hyperbolic space under different conditions. First we generalize the Bernstein theorem by Do Carmo and Lawson to the embedded hypersurfaces with constant higher order mean curvature. T
In this paper we give local and global parametric classifications of a class of Einstein submanifolds of Euclidean space. The highlight is for submanifolds of codimension two since in this case our assumptions are only of intrinsic nature.