ﻻ يوجد ملخص باللغة العربية
In this paper, we consider an expanding flow of closed, smooth, uniformly convex hypersurface in Euclidean mathbb{R}^{n+1} with speed u^alpha f^beta (alpha, betainmathbb{R}^1), where u is support function of the hypersurface, f is a smooth, symmetric, homogenous of degree one, positive function of the principal curvature radii of the hypersurface. If alpha leq 0<betaleq 1-alpha, we prove that the flow has a unique smooth and uniformly convex solution for all time, and converges smoothly after normalization, to a round sphere centered at the origin.
In this paper, we first consider a class of expanding flows of closed, smooth, star-shaped hypersurface in Euclidean space $mathbb{R}^{n+1}$ with speed $u^alpha f^{-beta}$, where $u$ is the support function of the hypersurface, $f$ is a smooth, symme
This paper concerns the evolution of complete noncompact locally uniformly convex hypersurface in Euclidean space by curvature flow, for which the normal speed $Phi$ is given by a power $betageq 1$ of a monotone symmetric and homogeneous of degree on
A classic theorem in the theory of connections on principal fiber bundles states that the evaluation of all holonomy functions gives enough information to characterize the bundle structure (among those sharing the same structure group and base manifo
In the first part of this paper, we develop the theory of anisotropic curvature measures for convex bodies in the Euclidean space. It is proved that any convex body whose boundary anisotropic curvature measure equals a linear combination of other low
In this paper we analyze the behavior of the distance function under Ricci flows whose scalar curvature is uniformly bounded. We will show that on small time-intervals the distance function is $frac12$-Holder continuous in a uniform sense. This impli