ترغب بنشر مسار تعليمي؟ اضغط هنا

Short Codes for Quantum Channels with One Prevalent Pauli Error Type

106   0   0.0 ( 0 )
 نشر من قبل Marco Chiani Dr.
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

One of the main problems in quantum information systems is the presence of errors due to noise, and for this reason quantum error-correcting codes (QECCs) play a key role. While most of the known codes are designed for correcting generic errors, i.e., errors represented by arbitrary combinations of Pauli X , Y and Z operators, in this paper we investigate the design of stabilizer QECC able to correct a given number eg of generic Pauli errors, plus eZ Pauli errors of a specified type, e.g., Z errors. These codes can be of interest when the quantum channel is asymmetric in that some types of error occur more frequently than others. We first derive a generalized quantum Hamming bound for such codes, then propose a design methodology based on syndrome assignments. For example, we found a [[9,1]] quantum error-correcting code able to correct up to one generic qubit error plus one Z error in arbitrary positions. This, according to the generalized quantum Hamming bound, is the shortest code with the specified error correction capability. Finally, we evaluate analytically the performance of the new codes over asymmetric channels.



قيم البحث

اقرأ أيضاً

Twirling is a technique widely used for converting arbitrary noise channels into Pauli channels in error threshold estimations of quantum error correction codes. It is vitally useful both in real experiments and in classical quantum simulations. Mini mising the size of the twirling gate set increases the efficiency of simulations and in experiments it might reduce both the number of runs required and the circuit depth (and hence the error burden). Conventional twirling uses the full set of Pauli gates as the set of twirling gates. This article provides a theoretical background for Pauli twirling and a way to construct a twirling gate set with a number of members comparable to the size of the Pauli basis of the given error channel, which is usually much smaller than the full set of Pauli gates. We also show that twirling is equivalent to stabiliser measurements with discarded measurement results, which enables us to further reduce the size of the twirling gate set.
We discuss a method to adapt the codeword stabilized (CWS) quantum code framework to the problem of finding asymmetric quantum codes. We focus on the corresponding Pauli error models for amplitude damping noise and phase damping noise. In particular, we look at codes for Pauli error models that correct one or two amplitude damping errors. Applying local Clifford operations on graph states, we are able to exhaustively search for all possible codes up to length $9$. With a similar method, we also look at codes for the Pauli error model that detect a single amplitude error and detect multiple phase damping errors. Many new codes with good parameters are found, including nonadditive codes and degenerate codes.
141 - Sixia Yu , Qing Chen , C.H. Oh 2007
We introduce a purely graph-theoretical object, namely the coding clique, to construct quantum errorcorrecting codes. Almost all quantum codes constructed so far are stabilizer (additive) codes and the construction of nonadditive codes, which are pot entially more efficient, is not as well understood as that of stabilizer codes. Our graphical approach provides a unified and classical way to construct both stabilizer and nonadditive codes. In particular we have explicitly constructed the optimal ((10,24,3)) code and a family of 1-error detecting nonadditive codes with the highest encoding rate so far. In the case of stabilizer codes a thorough search becomes tangible and we have classified all the extremal stabilizer codes up to 8 qubits.
Based on the group structure of a unitary Lie algebra, a scheme is provided to systematically and exhaustively generate quantum error correction codes, including the additive and nonadditive codes. The syndromes in the process of error-correction dis tinguished by different orthogonal vector subspaces, the coset subspaces. Moreover, the generated codes can be classified into four types with respect to the spinors in the unitary Lie algebra and a chosen initial quantum state.
We provide a systematic way of constructing entanglement-assisted quantum error-correcting codes via graph states in the scenario of preexisting perfectly protected qubits. It turns out that the preexisting entanglement can help beat the quantum Hamm ing bound and can enhance (not only behave as an assistance) the performance of the quantum error correction. Furthermore we generalize the error models to the case of not-so-perfectly-protected qubits and introduce the quantity infidelity as a figure of merit and show that our code outperforms also the ordinary quantum error-correcting codes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا