ﻻ يوجد ملخص باللغة العربية
One of the main problems in quantum information systems is the presence of errors due to noise, and for this reason quantum error-correcting codes (QECCs) play a key role. While most of the known codes are designed for correcting generic errors, i.e., errors represented by arbitrary combinations of Pauli X , Y and Z operators, in this paper we investigate the design of stabilizer QECC able to correct a given number eg of generic Pauli errors, plus eZ Pauli errors of a specified type, e.g., Z errors. These codes can be of interest when the quantum channel is asymmetric in that some types of error occur more frequently than others. We first derive a generalized quantum Hamming bound for such codes, then propose a design methodology based on syndrome assignments. For example, we found a [[9,1]] quantum error-correcting code able to correct up to one generic qubit error plus one Z error in arbitrary positions. This, according to the generalized quantum Hamming bound, is the shortest code with the specified error correction capability. Finally, we evaluate analytically the performance of the new codes over asymmetric channels.
Twirling is a technique widely used for converting arbitrary noise channels into Pauli channels in error threshold estimations of quantum error correction codes. It is vitally useful both in real experiments and in classical quantum simulations. Mini
We discuss a method to adapt the codeword stabilized (CWS) quantum code framework to the problem of finding asymmetric quantum codes. We focus on the corresponding Pauli error models for amplitude damping noise and phase damping noise. In particular,
We introduce a purely graph-theoretical object, namely the coding clique, to construct quantum errorcorrecting codes. Almost all quantum codes constructed so far are stabilizer (additive) codes and the construction of nonadditive codes, which are pot
Based on the group structure of a unitary Lie algebra, a scheme is provided to systematically and exhaustively generate quantum error correction codes, including the additive and nonadditive codes. The syndromes in the process of error-correction dis
We provide a systematic way of constructing entanglement-assisted quantum error-correcting codes via graph states in the scenario of preexisting perfectly protected qubits. It turns out that the preexisting entanglement can help beat the quantum Hamm