ترغب بنشر مسار تعليمي؟ اضغط هنا

Modules over some group rings having d-generator property

75   0   0.0 ( 0 )
 نشر من قبل Victor Bovdi A.
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

For modules over group rings we introduce the following numerical parameter. We say that a module A over a ring R has finite r-generator property if each f.g. (finitely generated) R-submodule of A can be generated exactly by r elements and there exists a f.g. R-submodule D of A, which has a minimal generating subset, consisting exactly of r elements. Let FG be the group algebra of a finite group G over a field F. In the present paper modules over the algebra FG having finite generator property are described.



قيم البحث

اقرأ أيضاً

A commutative ring R has finite rank r, if each ideal of R is generated at most by r elements. A commutative ring R has the r-generator property, if each finitely generated ideal of R can be generated by r elements. Such rings are closely related to Prufer domains. In the present paper we investigate some analogs of these concepts for modules over group rings.
Let $R$ be a commutative ring. We investigate $R$-modules which can be written as emph{finite} sums of {it {second}} $R$-submodules (we call them emph{second representable}). We provide sufficient conditions for an $R$-module $M$ to be have a (minima l) second presentation, in particular within the class of lifting modules. Moreover, we investigate the class of (emph{main}) emph{second attached prime ideals} related to a module with such a presentation.
243 - John Nicholson 2018
A long standing problem, which has its roots in low-dimensional homotopy theory, is to classify all finite groups $G$ for which the integral group ring $mathbb{Z}G$ has stably free cancellation (SFC). We extend results of R. G. Swan by giving a condi tion for SFC and use this to show that $mathbb{Z}G$ has SFC provided at most one copy of the quaternions $mathbb{H}$ occurs in the Wedderburn decomposition of the real group ring $mathbb{R}G$. This generalises the Eichler condition in the case of integral group rings.
239 - Amanda Croll 2013
It is proved that the minimal free resolution of a module M over a Gorenstein local ring R is eventually periodic if, and only if, the class of M is torsion in a certain Z[t,t^{-1}]-module associated to R. This module, denoted J(R), is the free Z[t,t ^{-1}]-module on the isomorphism classes of finitely generated R-modules modulo relations reminiscent of those defining the Grothendieck group of R. The main result is a structure theorem for J(R) when R is a complete Gorenstein local ring; the link between periodicity and torsion stated above is a corollary.
152 - Xiaolei Zhang , Wei Qi 2021
Let $R$ be a ring and $S$ a multiplicative subset of $R$. An $R$-module $P$ is called $S$-projective provided that the induced sequence $0rightarrow {rm Hom}_R(P,A)rightarrow {rm Hom}_R(P,B)rightarrow {rm Hom}_R(P,C)rightarrow 0$ is $S$-exact for any $S$-short exact sequence $0rightarrow Arightarrow Brightarrow Crightarrow 0$. Some characterizations and properties of $S$-projective modules are obtained. The notion of $S$-semisimple modules is also introduced. A ring $R$ is called an $S$-semisimple ring provided that every free $R$-module is $S$-semisimple. Several characterizations of $S$-semisimple rings are provided by using $S$-semisimple modules, $S$-projective modules, $S$-injective modules and $S$-split $S$-exact sequences.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا