ترغب بنشر مسار تعليمي؟ اضغط هنا

Periodic modules over Gorenstein local rings

241   0   0.0 ( 0 )
 نشر من قبل Amanda Croll
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English
 تأليف Amanda Croll




اسأل ChatGPT حول البحث

It is proved that the minimal free resolution of a module M over a Gorenstein local ring R is eventually periodic if, and only if, the class of M is torsion in a certain Z[t,t^{-1}]-module associated to R. This module, denoted J(R), is the free Z[t,t^{-1}]-module on the isomorphism classes of finitely generated R-modules modulo relations reminiscent of those defining the Grothendieck group of R. The main result is a structure theorem for J(R) when R is a complete Gorenstein local ring; the link between periodicity and torsion stated above is a corollary.



قيم البحث

اقرأ أيضاً

Let $(A,mathfrak{m})$ be a Gorenstein local ring and let $CMS(A)$ be its stable category of maximal CM $A$-modules. Suppose $CMS(A) cong CMS(B)$ as triangulated categories. Then we show (1) If $A$ is a complete intersection of codimension $c$ then so is $B$. (2) If $A, B$ are Henselian and not hypersurfaces then $dim A = dim B$. (3) If $A, B$ are Henselian and $A$ is an isolated singularity then so is $B$. We also give some applications of our results.
A new construction of rings is introduced, studied, and applied. Given surjective homomorphisms $Rto Tgets S$ of local rings, and ideals in $R$ and $S$ that are isomorphic to some $T$-module $V$, the emph{connected sum} $R#_TS$ is defined to be the l ocal ring obtained by factoring out the diagonal image of $V$ in the fiber product $Rtimes_TS$. When $T$ is Cohen-Macaulay of dimension $d$ and $V$ is a canonical module of $T$, it is proved that if $R$ and $S$ are Gorenstein of dimension $d$, then so is $R#_TS$. This result is used to study how closely an artinian ring can be approximated by Gorenstein rings mapping onto it. It is proved that when $T$ is a field the cohomology algebra $Ext^*_{R#_kS}(k,k)$ is an amalgam of the algebras $Ext^*_{R}(k,k)$ and $Ext^*_{S}(k,k)$ over isomorphic polynomial subalgebras generated by one element of degree 2. This is used to show that when $T$ is regular, the ring $R#_TS$ almost never is complete intersection.
Let $A$ be a regular ring containing a field $K$ of characteristic zero and let $R = A[X_1,ldots, X_m]$. Consider $R$ as standard graded with $deg A = 0$ and $deg X_i = 1$ for all $i$. Let $G$ be a finite subgroup of $GL_m(A)$. Let $G$ act linearly o n $R$ fixing $A$. Let $S = R^G$. In this paper we present a comprehensive study of graded components of local cohomology modules $H^i_I(S)$ where $I$ is an emph{arbitrary} homogeneous ideal in $S$. We prove stronger results when $G subseteq GL_m(K)$. Some of our results are new even in the case when $A$ is a field.
Let fa be an ideal of a local ring (R,fm) and M a finitely generated R-module. This paper concerns the notion fgrade(fa,M), the formal grade of M with respect to fa (i.e. the least integer i such that {vpl}_nH^i_{fm}(M/fa^n M) eq 0). We show that fgr ade(fa,M)geq depth M-cd_{fa}(M), and as a result, we establish a new characterization of Cohen-Macaulay modules. As an application of this characterization, we show that if M is Cohen-Macaulay and L a pure submodule of M with the same support as M, then fgrade(fa,L)=fgrade(fa,M). Also, we give a generalization of the Hochster-Eagon result on Cohen-Macaulayness of invariant rings.
182 - Francois Couchot 2011
It is proven that each indecomposable injective module over a valuation domain $R$ is polyserial if and only if each maximal immediate extension $widehat{R}$ of $R$ is of finite rank over the completion $widetilde{R}$ of $R$ in the $R$-topology. In t his case, for each indecomposable injective module $E$, the following invariants are finite and equal: its Malcev rank, its Fleischer rank and its dual Goldie dimension. Similar results are obtained for chain rings satisfying some additional properties. It is also shown that each indecomposable injective module over one Krull-dimensional local Noetherian rings has finite Malcev rank. The preservation of Goldie dimension finiteness by localization is investigated too.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا