ﻻ يوجد ملخص باللغة العربية
We present the first numerically stable nonlinear evolution for the leading-order gravitational effective field theory (Quadratic Gravity) in the spherically-symmetric sector. The formulation relies on (i) harmonic gauge to cast the evolution system into quasi-linear form (ii) the Cartoon method to reduce to spherical symmetry in keeping with harmonic gauge, and (iii) order-reduction to 1st-order (in time) by means of introducing auxiliary variables. Well-posedness of the respective initial-value problem is numerically confirmed by evolving randomly perturbed flat-space and black-hole initial data. Our study serves as a proof-of-principle for the possibility of stable numerical evolution in the presence of higher derivatives.
We report on a numerical investigation of black hole evolution in an Einstein dilaton Gauss-Bonnet (EdGB) gravity theory where the Gauss-Bonnet coupling and scalar (dilaton) field potential are symmetric under a global change in sign of the scalar fi
We study static, spherically symmetric vacuum solutions to Quadratic Gravity, extending considerably our previous Rapid Communication [Phys. Rev. D 98, 021502(R) (2018)] on this topic. Using a conformal-to-Kundt metric ansatz, we arrive at a much sim
We study the evolution of a self interacting scalar field in Einstein-Gauss-Bonnet theory in four dimension where the scalar field couples non minimally with the Gauss-Bonnet term. Considering a polynomial coupling of the scalar field with the Gauss-
We consider spherically symmetric black holes in generic Lovelock gravity. Using geometrodynamical variables we do a complete Hamiltonian analysis, including derivation of the super-Hamiltonian and super-momentum constraints and verification of suita
Metastable states decay at zero temperature through quantum tunneling at an exponentially small rate, which depends on the Coleman-de Luccia instanton, also known as bounce. In some theories, the bounce may not exist or its on-shell action may be ill