ﻻ يوجد ملخص باللغة العربية
We consider spherically symmetric black holes in generic Lovelock gravity. Using geometrodynamical variables we do a complete Hamiltonian analysis, including derivation of the super-Hamiltonian and super-momentum constraints and verification of suitable boundary conditions for asymptotically flat black holes. Our analysis leads to a remarkably simple fully reduced Hamiltonian for the vacuum gravitational sector that provides the starting point for the quantization of Lovelock block holes. Finally, we derive the completely reduced equations of motion for the collapse of a spherically symmetric charged, self-gravitating complex scalar field in generalized flat slice (Painlev{e}-Gullstrand) coordinates.
We study quasinormal modes of black holes in Lovelock gravity. We formulate the WKB method adapted to Lovelock gravity for the calculation of quasinormal frequencies (QNFs). As a demonstration, we calculate various QNFs of Lovelock black holes in sev
In the present paper, a new class of black hole solutions is constructed in even dimensional Lovelock Born-Infeld theory. These solutions are interesting since, in some respects, they are closer to black hole solutions of an odd dimensional Lovelock
It is found that, when the coupling constants $alpha_p$ in the theory of regularized Lovelock gravity are properly chosen and the number of Lovelock tensors $prightarrow infty$, there exist a fairly large number of nonsingular (singularity free) blac
We numerically compute the renormalized expectation value $langlehat{Phi}^{2}rangle_{ren}$ of a minimally-coupled massless quantum scalar field in the interior of a four-dimensional Reissner-Nordstrom black hole, in both the Hartle-Hawking and Unruh
We present the first numerically stable nonlinear evolution for the leading-order gravitational effective field theory (Quadratic Gravity) in the spherically-symmetric sector. The formulation relies on (i) harmonic gauge to cast the evolution system