ﻻ يوجد ملخص باللغة العربية
Diabetes is a major public health challenge worldwide. Abnormal physiology in diabetes, particularly hypoglycemia, can cause driver impairments that affect safe driving. While diabetes driver safety has been previously researched, few studies link real-time physiologic changes in drivers with diabetes to objective real-world driver safety, particularly at high-risk areas like intersections. To address this, we investigated the role of acute physiologic changes in drivers with type 1 diabetes mellitus (T1DM) on safe stopping at stop intersections. 18 T1DM drivers (21-52 years, mean = 31.2 years) and 14 controls (21-55 years, mean = 33.4 years) participated in a 4-week naturalistic driving study. At induction, each participants vehicle was fitted with a camera and sensor system to collect driving data. Video was processed with computer vision algorithms detecting traffic elements. Stop intersections were geolocated with clustering methods, state intersection databases, and manual review. Videos showing driver stop intersection approaches were extracted and manually reviewed to classify stopping behavior (full, rolling, and no stop) and intersection traffic characteristics. Mixed-effects logistic regression models determined how diabetes driver stopping safety (safe vs. unsafe stop) was affected by 1) disease and 2) at-risk, acute physiology (hypo- and hyperglycemia). Diabetes drivers who were acutely hyperglycemic had 2.37 increased odds of unsafe stopping (95% CI: 1.26-4.47, p = 0.008) compared to those with normal physiology. Acute hypoglycemia did not associate with unsafe stopping (p = 0.537), however the lower frequency of hypoglycemia (vs. hyperglycemia) warrants a larger sample of drivers to investigate this effect. Critically, presence of diabetes alone did not associate with unsafe stopping, underscoring the need to evaluate driver physiology in licensing guidelines.
The human insulin-glucose metabolism is a time-varying process, which is partly caused by the changing insulin sensitivity of the body. This insulin sensitivity follows a circadian rhythm and its effects should be anticipated by any automated insulin
Objective: To evaluate unsupervised clustering methods for identifying individual-level behavioral-clinical phenotypes that relate personal biomarkers and behavioral traits in type 2 diabetes (T2DM) self-monitoring data. Materials and Methods: We use
Forecasting has always been at the forefront of decision making and planning. The uncertainty that surrounds the future is both exciting and challenging, with individuals and organisations seeking to minimise risks and maximise utilities. The large n
We review methods for monitoring multivariate time-between-events (TBE) data. We present some underlying complexities that have been overlooked in the literature. It is helpful to classify multivariate TBE monitoring applications into two fundamental
Uncertainty Quantification (UQ) is an essential step in computational model validation because assessment of the model accuracy requires a concrete, quantifiable measure of uncertainty in the model predictions. The concept of UQ in the nuclear commun