ﻻ يوجد ملخص باللغة العربية
Objective: To evaluate unsupervised clustering methods for identifying individual-level behavioral-clinical phenotypes that relate personal biomarkers and behavioral traits in type 2 diabetes (T2DM) self-monitoring data. Materials and Methods: We used hierarchical clustering (HC) to identify groups of meals with similar nutrition and glycemic impact for 6 individuals with T2DM who collected self-monitoring data. We evaluated clusters on: 1) correspondence to gold standards generated by certified diabetes educators (CDEs) for 3 participants; 2) face validity, rated by CDEs, and 3) impact on CDEs ability to identify patterns for another 3 participants. Results: Gold standard (GS) included 9 patterns across 3 participants. Of these, all 9 were re-discovered using HC: 4 GS patterns were consistent with patterns identified by HC (over 50% of meals in a cluster followed the pattern); another 5 were included as sub-groups in broader clusers. 50% (9/18) of clusters were rated over 3 on 5-point Likert scale for validity, significance, and being actionable. After reviewing clusters, CDEs identified patterns that were more consistent with data (70% reduction in contradictions between patterns and participants records). Discussion: Hierarchical clustering of blood glucose and macronutrient consumption appears suitable for discovering behavioral-clinical phenotypes in T2DM. Most clusters corresponded to gold standard and were rated positively by CDEs for face validity. Cluster visualizations helped CDEs identify more robust patterns in nutrition and glycemic impact, creating new possibilities for visual analytic solutions. Conclusion: Machine learning methods can use diabetes self-monitoring data to create personalized behavioral-clinical phenotypes, which may prove useful for delivering personalized medicine.
Diabetes is a major public health challenge worldwide. Abnormal physiology in diabetes, particularly hypoglycemia, can cause driver impairments that affect safe driving. While diabetes driver safety has been previously researched, few studies link re
Prediction of diabetes and its various complications has been studied in a number of settings, but a comprehensive overview of problem setting for diabetes prediction and care management has not been addressed in the literature. In this document we s
Leveraging health administrative data (HAD) datasets for predicting the risk of chronic diseases including diabetes has gained a lot of attention in the machine learning community recently. In this paper, we use the largest health records datasets of
Throughout the COVID-19 pandemic, government policy and healthcare implementation responses have been guided by reported positivity rates and counts of positive cases in the community. The selection bias of these data calls into question their validi
This work is motivated by the Obepine French system for SARS-CoV-2 viral load monitoring in wastewater. The objective of this work is to identify, from time-series of noisy measurements, the underlying auto-regressive signals, in a context where the