ﻻ يوجد ملخص باللغة العربية
We explore recent progress and open questions concerning local minima and saddle points of the Cahn--Hilliard energy in $dgeq 2$ and the critical parameter regime of large system size and mean value close to $-1$. We employ the String Method of E, Ren, and Vanden-Eijnden -- a numerical algorithm for computing transition pathways in complex systems -- in $d=2$ to gain additional insight into the properties of the minima and saddle point. Motivated by the numerical observations, we adapt a method of Caffarelli and Spruck to study convexity of level sets in $dgeq 2$.
The Cahn-Hilliard energy landscape on the torus is explored in the critical regime of large system size and mean value close to $-1$. Existence and properties of a droplet-shaped local energy minimizer are established. A standard mountain pass argume
We study the asymptotic properties of the stochastic Cahn-Hilliard equation with the logarithmic free energy by establishing different dimension-free Harnack inequalities according to various kinds of noises. The main characteristics of this equation
We develop the theory of fractional gradient flows: an evolution aimed at the minimization of a convex, l.s.c.~energy, with memory effects. This memory is characterized by the fact that the negative of the (sub)gradient of the energy equals the so-ca
The phase separation of an isothermal incompressible binary fluid in a porous medium can be described by the so-called Brinkman equation coupled with a convective Cahn-Hilliard (CH) equation. The former governs the average fluid velocity $mathbf{u}$,
We introduce a fractional variant of the Cahn-Hilliard equation settled in a bounded domain $Omega$ of $R^N$ and complemented with homogeneous Dirichlet boundary conditions of solid type (i.e., imposed in the entire complement of $Omega$). After sett