ﻻ يوجد ملخص باللغة العربية
The Cahn-Hilliard energy landscape on the torus is explored in the critical regime of large system size and mean value close to $-1$. Existence and properties of a droplet-shaped local energy minimizer are established. A standard mountain pass argument leads to the existence of a saddle point whose energy is equal to the energy barrier, for which a quantitative bound is deduced. In addition, finer properties of the local minimizer and appropriately defined constrained minimizers are deduced. The proofs employ the $Gamma$-limit (identified in a previous work), quantitative isoperimetric inequalities, variational arguments, and Steiner symmetrization.
We explore recent progress and open questions concerning local minima and saddle points of the Cahn--Hilliard energy in $dgeq 2$ and the critical parameter regime of large system size and mean value close to $-1$. We employ the String Method of E, Re
The functionalized Cahn-Hilliard (FCH) equation supports planar and circular bilayer interfaces as equilibria which may lose their stability through the pearling bifurcation: a periodic, high-frequency, in-plane modulation of the bilayer thickness. I
The phase separation of an isothermal incompressible binary fluid in a porous medium can be described by the so-called Brinkman equation coupled with a convective Cahn-Hilliard (CH) equation. The former governs the average fluid velocity $mathbf{u}$,
Multicomponent bilayer structures arise as the ubiquitous plasma membrane in cellular biology and as blends of amphiphilic copolymers used in electrolyte membranes, drug delivery, and emulsion stabilization within the context of synthetic chemistry.
We establish sufficient conditions for a function on the torus to be equal to its Steiner symmetrization and apply the result to volume-constrained minimizers of the Cahn-Hilliard energy. We also show how two-point rearrangements can be used to estab