ﻻ يوجد ملخص باللغة العربية
We present a novel method for graph partitioning, based on reinforcement learning and graph convolutional neural networks. Our approach is to recursively partition coarser representations of a given graph. The neural network is implemented using SAGE graph convolution layers, and trained using an advantage actor critic (A2C) agent. We present two variants, one for finding an edge separator that minimizes the normalized cut or quotient cut, and one that finds a small vertex separator. The vertex separators are then used to construct a nested dissection ordering to permute a sparse matrix so that its triangular factorization will incur less fill-in. The partitioning quality is compared with partitions obtained using METIS and SCOTCH, and the nested dissection ordering is evaluated in the sparse solver SuperLU. Our results show that the proposed method achieves similar partitioning quality as METIS and SCOTCH. Furthermore, the method generalizes across different classes of graphs, and works well on a variety of graphs from the SuiteSparse sparse matrix collection.
Graph similarity computation aims to predict a similarity score between one pair of graphs to facilitate downstream applications, such as finding the most similar chemical compounds similar to a query compound or Fewshot 3D Action Recognition. Recent
Efficient numerical solvers for sparse linear systems are crucial in science and engineering. One of the fastest methods for solving large-scale sparse linear systems is algebraic multigrid (AMG). The main challenge in the construction of AMG algorit
Network data can be conveniently modeled as a graph signal, where data values are assigned to nodes of a graph that describes the underlying network topology. Successful learning from network data is built upon methods that effectively exploit this g
Let $f:{-1,1}^n$ be a polynomial with at most $s$ non-zero real coefficients. We give an algorithm for exactly reconstructing f given random examples from the uniform distribution on ${-1,1}^n$ that runs in time polynomial in $n$ and $2s$ and succeed
Graph Neural Networks (GNNs) have proved to be an effective representation learning framework for graph-structured data, and have achieved state-of-the-art performance on many practical predictive tasks, such as node classification, link prediction a