ﻻ يوجد ملخص باللغة العربية
Let $f:{-1,1}^n$ be a polynomial with at most $s$ non-zero real coefficients. We give an algorithm for exactly reconstructing f given random examples from the uniform distribution on ${-1,1}^n$ that runs in time polynomial in $n$ and $2s$ and succeeds if the function satisfies the unique sign property: there is one output value which corresponds to a unique set of values of the participating parities. This sufficient condition is satisfied when every coefficient of f is perturbed by a small random noise, or satisfied with high probability when s parity functions are chosen randomly or when all the coefficients are positive. Learning sparse polynomials over the Boolean domain in time polynomial in $n$ and $2s$ is considered notoriously hard in the worst-case. Our result shows that the problem is tractable for almost all sparse polynomials. Then, we show an application of this result to hypergraph sketching which is the problem of learning a sparse (both in the number of hyperedges and the size of the hyperedges) hypergraph from uniformly drawn random cuts. We also provide experimental results on a real world dataset.
This paper considers the problem of recovering an unknown sparse ptimes p matrix X from an mtimes m matrix Y=AXB^T, where A and B are known m times p matrices with m << p. The main result shows that there exist constructions of the sketching matric
We present a novel method for graph partitioning, based on reinforcement learning and graph convolutional neural networks. Our approach is to recursively partition coarser representations of a given graph. The neural network is implemented using SAGE
Kernel methods are fundamental in machine learning, and faster algorithms for kernel approximation provide direct speedups for many core tasks in machine learning. The polynomial kernel is especially important as other kernels can often be approximat
Existing approaches to federated learning suffer from a communication bottleneck as well as convergence issues due to sparse client participation. In this paper we introduce a novel algorithm, called FetchSGD, to overcome these challenges. FetchSGD c
Graph Neural Networks (GNNs) have proved to be an effective representation learning framework for graph-structured data, and have achieved state-of-the-art performance on many practical predictive tasks, such as node classification, link prediction a