ﻻ يوجد ملخص باللغة العربية
Kirigami is the art of cutting paper to make it articulated and deployable, allowing for it to be shaped into complex two and three-dimensional geometries. The mechanical response of a kirigami sheet when it is pulled at its ends is enabled and limited by the presence of cuts that serve to guide the possible non-planar deformations. Inspired by the geometry of this art form, we ask two questions: (i) What is the shortest path between points at which forces are applied? (ii) What is the nature of the ultimate shape of the sheet when it is strongly stretched? Mathematically, these questions are related to the nature and form of geodesics in the Euclidean plane with linear obstructions (cuts), and the nature and form of isometric immersions of the sheet with cuts when it can be folded on itself. We provide a constructive proof that the geodesic connecting any two points in the plane is piecewise polygonal. We then prove that the family of polygonal geodesics can be simultaneously rectified into a straight line by flat-folding the sheet so that its configuration is a (non-unique) piecewise affine planar isometric immersion.
We explore the relation among volume, curvature and properness of a $m$-dimensional isometric immersion in a Riemannian manifold. We show that, when the $L^p$-norm of the mean curvature vector is bounded for some $m leq pleq infty$, and the ambient m
We revisit the classical problem due to Weyl, as well as its generalisations, concerning the isometric immersions of $mathbb{S}^2$ into simply-connected $3$-dimensional Riemannian manifolds with non-negative Gauss curvature. A sufficient condition is
We prove the existence, uniqueness, and $W^{1,2}$-regularity for the solution to the Pfaff system with antisymmetric $L^2$-coefficient matrix in arbitrary dimensions. Hence, we establish the equivalence between the existence of $W^{2,2}$-isometric im
We investigate the behavior of the second fundamental form of an isometric immersion of a space form with negative curvature into a space form so that the extrinsic curvature is negative. If the immersion has flat normal bundle, we prove that its second fundamental form grows exponentially.
Using a bigraded differential complex depending on the CR and pseudohermitian structure, we give a characterization of three-dimensional strongly pseudoconvex pseudo-hermitian CR-manifolds isometrically immersed in Euclidean space $mathbb{R}^n$ in te