ﻻ يوجد ملخص باللغة العربية
We prove the existence, uniqueness, and $W^{1,2}$-regularity for the solution to the Pfaff system with antisymmetric $L^2$-coefficient matrix in arbitrary dimensions. Hence, we establish the equivalence between the existence of $W^{2,2}$-isometric immersions and the weak solubility of the Gauss--Codazzi--Ricci equations on simply-connected domains. The regularity assumptions of these results are sharp. As an application, we deduce a weak compactness theorem for $W^{2,2}_{rm loc}$-immersions.
Kirigami is the art of cutting paper to make it articulated and deployable, allowing for it to be shaped into complex two and three-dimensional geometries. The mechanical response of a kirigami sheet when it is pulled at its ends is enabled and limit
We revisit the classical problem due to Weyl, as well as its generalisations, concerning the isometric immersions of $mathbb{S}^2$ into simply-connected $3$-dimensional Riemannian manifolds with non-negative Gauss curvature. A sufficient condition is
We explore the relation among volume, curvature and properness of a $m$-dimensional isometric immersion in a Riemannian manifold. We show that, when the $L^p$-norm of the mean curvature vector is bounded for some $m leq pleq infty$, and the ambient m
We investigate the behavior of the second fundamental form of an isometric immersion of a space form with negative curvature into a space form so that the extrinsic curvature is negative. If the immersion has flat normal bundle, we prove that its second fundamental form grows exponentially.
Using a bigraded differential complex depending on the CR and pseudohermitian structure, we give a characterization of three-dimensional strongly pseudoconvex pseudo-hermitian CR-manifolds isometrically immersed in Euclidean space $mathbb{R}^n$ in te