ﻻ يوجد ملخص باللغة العربية
The scalability of photonic implementations of fault-tolerant quantum computing based on Gottesman-Kitaev-Preskill (GKP) qubits is injured by the requirements of inline squeezing and reconfigurability of the linear optical network. In this work we propose a topologically error-corrected architecture that does away with these elements at no cost - in fact, at an advantage - to state preparation overheads. Our computer consists of three modules: a 2D array of probabilistic sources of GKP states; a depth-four circuit of static beamsplitters, phase shifters, and single-time-step delay lines; and a 2D array of homodyne detectors. The symmetry of our proposed circuit allows us to combine the effects of finite squeezing and uniform photon loss within the noise model, resulting in more comprehensive threshold estimates. These jumps over both architectural and analytical hurdles considerably expedite the construction of a photonic quantum computer.
We explain how to combine holonomic quantum computation (HQC) with fault tolerant quantum error correction. This establishes the scalability of HQC, putting it on equal footing with other models of computation, while retaining the inherent robustness the method derives from its geometric nature.
Reliable qubits are difficult to engineer, but standard fault-tolerance schemes use seven or more physical qubits to encode each logical qubit, with still more qubits required for error correction. The large overhead makes it hard to experiment with
We study how dynamical decoupling (DD) pulse sequences can improve the reliability of quantum computers. We prove upper bounds on the accuracy of DD-protected quantum gates and derive sufficient conditions for DD-protected gates to outperform unprote
We develop a scheme for fault-tolerant quantum computation based on asymmetric Bacon-Shor codes, which works effectively against highly biased noise dominated by dephasing. We find the optimal Bacon-Shor block size as a function of the noise strength
Certain physical systems that one might consider for fault-tolerant quantum computing where qubits do not readily interact, for instance photons, are better suited for measurement-based quantum-computational protocols. Here we propose a measurement-b