ترغب بنشر مسار تعليمي؟ اضغط هنا

Universal fault-tolerant measurement-based quantum computation

129   0   0.0 ( 0 )
 نشر من قبل Benjamin Brown
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Certain physical systems that one might consider for fault-tolerant quantum computing where qubits do not readily interact, for instance photons, are better suited for measurement-based quantum-computational protocols. Here we propose a measurement-based model for universal quantum computation that simulates the braiding and fusion of Majorana modes. To derive our model we develop a general framework that maps any scheme of fault-tolerant quantum computation with stabilizer codes into the measurement-based picture. As such, our framework gives an explicit way of producing fault-tolerant models of universal quantum computation with linear optics using protocols developed using the stabilizer formalism. Given the remarkable fault-tolerant properties that Majorana modes promise, the main example we present offers a robust and resource efficient proposal for photonic quantum computation.



قيم البحث

اقرأ أيضاً

Continuous variable measurement-based quantum computation on cluster states has in recent years shown great potential for scalable, universal, and fault-tolerant quantum computation when combined with the Gottesman-Kitaev-Preskill (GKP) code and quan tum error correction. However, no complete fault-tolerant architecture exists that includes everything from cluster state generation with finite squeezing to gate implementations with realistic noise and error correction. In this work, we propose a simple architecture for the preparation of a cluster state in three dimensions in which gates by gate teleportation can be efficiently implemented. To accommodate scalability, we propose architectures that allow for both spatial and temporal multiplexing, with the temporal encoded version requiring as little as two squeezed light sources. Due to its three-dimensional structure, the architecture supports topological qubit error correction, while GKP error correction is efficiently realized within the architecture by teleportation. To validate fault-tolerance, the architecture is simulated using surface-GKP codes, including noise from GKP-states as well as gate noise caused by finite squeezing in the cluster state. We find a fault-tolerant squeezing threshold of 12.7 dB with room for further improvement.
We explain how to combine holonomic quantum computation (HQC) with fault tolerant quantum error correction. This establishes the scalability of HQC, putting it on equal footing with other models of computation, while retaining the inherent robustness the method derives from its geometric nature.
A set of stabilizer operations augmented by some special initial states known as magic states, gives the possibility of universal fault-tolerant quantum computation. However, magic state preparation inevitably involves nonideal operations that introd uce noise. The most common method to eliminate the noise is magic state distillation (MSD) by stabilizer operations. Here we propose a hybrid MSD protocol by connecting a four-qubit H-type MSD with a five-qubit T-type MSD, in order to overcome some disadvantages of the previous MSD protocols. The hybrid MSD protocol further integrates distillable ranges of different existing MSD protocols and extends the T-type distillable range to the stabilizer octahedron edges. And it provides considerable improvement in qubit cost for almost all of the distillable range. Moreover, we experimentally demonstrate the four-qubit H-type MSD protocol using nuclear magnetic resonance technology, together with the previous five-qubit MSD experiment, to show the feasibility of the hybrid MSD protocol.
Quantum computers promise dramatic speed ups for many computational tasks. For large-scale quantum computation however, the inevitable coupling of physical qubits to the noisy environment imposes a major challenge for a real-life implementation. A sc heme introduced by Gottesmann and Chuang can help to overcome this difficulty by performing universal quantum gates in a fault-tolerant manner. Here, we report a non-trivial demonstration of this architecture by performing a teleportation-based two-qubit controlled-NOT gate through linear optics with a high-fidelity six-photon interferometer. The obtained results clearly prove the involved working principles and the entangling capability of the gate. Our experiment represents an important step towards the feasibility of realistic quantum computers and could trigger many further applications in linear optics quantum information processing.
We study how dynamical decoupling (DD) pulse sequences can improve the reliability of quantum computers. We prove upper bounds on the accuracy of DD-protected quantum gates and derive sufficient conditions for DD-protected gates to outperform unprote cted gates. Under suitable conditions, fault-tolerant quantum circuits constructed from DD-protected gates can tolerate stronger noise, and have a lower overhead cost, than fault-tolerant circuits constructed from unprotected gates. Our accuracy estimates depend on the dynamics of the bath that couples to the quantum computer, and can be expressed either in terms of the operator norm of the baths Hamiltonian or in terms of the power spectrum of bath correlations; we explain in particular how the performance of recursively generated concatenated pulse sequences can be analyzed from either viewpoint. Our results apply to Hamiltonian noise models with limited spatial correlations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا