ﻻ يوجد ملخص باللغة العربية
We develop a new method based on Gaussian process to reconstruct the mass distribution of binary black holes (BBHs). Instead of prespecifying the formalisms of mass distribution, we introduce a more flexible and nonparametric model with which the distribution can be mainly determined by the observed data. We first test our method with simulated data, and find that it can well recover the injected distribution. Then we apply this method to analyze the data of BBHs observations from LIGO-Virgo Gravitational-Wave Transient Catalog 2. By reconstructing the chirp mass distribution, we find that there is a peak or a platform locating at $20-30,M_{odot}$ rather than a single-power-law-like decrease from low mass to high mass. Moreover, one or two peaks in the chirp mass range of $mathcal{M}<20,M_{odot}$ may be favored by the data. Assuming a mass-independent mass ratio distribution of $p(q)propto q^{1.4}$, we further obtain a distribution of primary mass, and find that there is a feature locating in the range of $(30, 40),M_{odot}$, which can be related to textsc{Broken Power Law} and textsc{Power Law + Peak} distributions described in The LIGO Scientific Collaboration et al. (2020). Besides, the merger rate of BBHs is estimated to $mathcal{R} = 26.29^{+14.21}_{-8.96}~{rm Gpc^{-3}~yr^{-1}}$ supposing there is no redshift evolution.
With the black hole mass function (BHMF; assuming an exponential cutoff at a mass of $sim 40,M_odot$) of coalescing binary black hole systems constructed with the events detected in the O1 run of the advanced LIGO/Virgo network, Liang et al.(2017) pr
We analyze the LIGO/Virgo GWTC-2 catalog to study the primary mass distribution of the merging black holes. We perform hierarchical Bayesian analysis, and examine whether the mass distribution has a sharp cutoff for primary black hole masses below $6
Many proposed scenarios for black hole (BH) mergers involve a tertiary companion that induces von Zeipel-Lidov-Kozai (ZLK) eccentricity cycles in the inner binary. An attractive feature of such mechanisms is the enhanced merger probability when the o
On June 8, 2017 at 02:01:16.49 UTC, a gravitational-wave signal from the merger of two stellar-mass black holes was observed by the two Advanced LIGO detectors with a network signal-to-noise ratio of 13. This system is the lightest black hole binary
We study the impact of mass-transfer physics on the observable properties of binary black hole populations formed through isolated binary evolution. We investigate the impact of mass-accretion efficiency onto compact objects and common-envelope effic