ﻻ يوجد ملخص باللغة العربية
On June 8, 2017 at 02:01:16.49 UTC, a gravitational-wave signal from the merger of two stellar-mass black holes was observed by the two Advanced LIGO detectors with a network signal-to-noise ratio of 13. This system is the lightest black hole binary so far observed, with component masses $12^{+7}_{-2},M_odot$ and $7^{+2}_{-2},M_odot$ (90% credible intervals). These lie in the range of measured black hole masses in low-mass X-ray binaries, thus allowing us to compare black holes detected through gravitational waves with electromagnetic observations. The sources luminosity distance is $340^{+140}_{-140}$ Mpc, corresponding to redshift $0.07^{+0.03}_{-0.03}$. We verify that the signal waveform is consistent with the predictions of general relativity.
We report the observation of gravitational waves from a binary-black-hole coalescence during the first two weeks of LIGOs and Virgos third observing run. The signal was recorded on April 12, 2019 at 05:30:44 UTC with a network signal-to-noise ratio o
We describe the observation of GW170104, a gravitational-wave signal produced by the coalescence of a pair of stellar-mass black holes. The signal was measured on January 4, 2017 at 10:11:58.6 UTC by the twin advanced detectors of the Laser Interfero
On 2019 April 25, the LIGO Livingston detector observed a compact binary coalescence with signal-to-noise ratio 12.9. The Virgo detector was also taking data that did not contribute to detection due to a low signal-to-noise ratio, but were used for s
Many proposed scenarios for black hole (BH) mergers involve a tertiary companion that induces von Zeipel-Lidov-Kozai (ZLK) eccentricity cycles in the inner binary. An attractive feature of such mechanisms is the enhanced merger probability when the o
In this paper we propose the model that the coalescence of primordial black holes (PBHs) binaries with equal mass $M sim 10^{28}$g can emit luminous gigahertz (GHz) radio transient, which may be candidate sources for the observed fast radio bursts (F