ﻻ يوجد ملخص باللغة العربية
With the dramatic rise in high-quality galaxy data expected from Euclid and Vera C. Rubin Observatory, there will be increasing demand for fast high-precision methods for measuring galaxy fluxes. These will be essential for inferring the redshifts of the galaxies. In this paper, we introduce Lumos, a deep learning method to measure photometry from galaxy images. Lumos builds on BKGnet, an algorithm to predict the background and its associated error, and predicts the background-subtracted flux probability density function. We have developed Lumos for data from the Physics of the Accelerating Universe Survey (PAUS), an imaging survey using 40 narrow-band filter camera (PAUCam). PAUCam images are affected by scattered light, displaying a background noise pattern that can be predicted and corrected for. On average, Lumos increases the SNR of the observations by a factor of 2 compared to an aperture photometry algorithm. It also incorporates other advantages like robustness towards distorting artifacts, e.g. cosmic rays or scattered light, the ability of deblending and less sensitivity to uncertainties in the galaxy profile parameters used to infer the photometry. Indeed, the number of flagged photometry outlier observations is reduced from 10% to 2%, comparing to aperture photometry. Furthermore, with Lumos photometry, the photo-z scatter is reduced by ~10% with the Deepz machine learning photo-z code and the photo-z outlier rate by 20%. The photo-z improvement is lower than expected from the SNR increment, however currently the photometric calibration and outliers in the photometry seem to be its limiting factor.
In any imaging survey, measuring accurately the astronomical background light is crucial to obtain good photometry. This paper introduces BKGnet, a deep neural network to predict the background and its associated error. BKGnet has been developed for
We present a mock catalogue for the Physics of the Accelerating Universe Survey (PAUS) and use it to quantify the competitiveness of the narrow band imaging for measuring spectral features and galaxy clustering. The mock agrees with observed number c
Classification of stars and galaxies is a well-known astronomical problem that has been treated using different approaches, most of them relying on morphological information. In this paper, we tackle this issue using the low-resolution spectra from n
In this work, we explore the application of intensity mapping to detect extended Ly$alpha$ emission from the IGM via cross-correlation of PAUS images with Ly$alpha$ forest data from eBOSS and DESI. Seven narrow-band (FWHM=13nm) PAUS filters have been
Narrow-band imaging surveys allow the study of the spectral characteristics of galaxies without the need of performing their spectroscopic follow-up. In this work, we forward-model the Physics of the Accelerating Universe Survey (PAUS) narrow-band da