ﻻ يوجد ملخص باللغة العربية
In any imaging survey, measuring accurately the astronomical background light is crucial to obtain good photometry. This paper introduces BKGnet, a deep neural network to predict the background and its associated error. BKGnet has been developed for data from the Physics of the Accelerating Universe Survey (PAUS), an imaging survey using a 40 narrow-band filter camera (PAUCam). Images obtained with PAUCam are affected by scattered light: an optical effect consisting of light multiply that deposits energy in specific detector regions contaminating the science measurements. Fortunately, scattered light is not a random effect, but it can be predicted and corrected for. We have found that BKGnet background predictions are very robust to distorting effects, while still being statistically accurate. On average, the use of BKGnet improves the photometric flux measurements by 7% and up to 20% at the bright end. BKGnet also removes a systematic trend in the background error estimation with magnitude in the i-band that is present with the current PAU data management method. With BKGnet, we reduce the photometric redshift outlier rate
With the dramatic rise in high-quality galaxy data expected from Euclid and Vera C. Rubin Observatory, there will be increasing demand for fast high-precision methods for measuring galaxy fluxes. These will be essential for inferring the redshifts of
Classification of stars and galaxies is a well-known astronomical problem that has been treated using different approaches, most of them relying on morphological information. In this paper, we tackle this issue using the low-resolution spectra from n
Estimating depth from RGB images is a long-standing ill-posed problem, which has been explored for decades by the computer vision, graphics, and machine learning communities. Among the existing techniques, stereo matching remains one of the most wide
The Physics of the Accelerating Universe (PAU) Survey is an international project for the study of cosmological parameters associated with Dark Energy. PAUs 18-CCD camera (PAUCam), installed at the prime focus of the William Herschel Telescope at the
Arrays of imaging atmospheric Cherenkov telescopes (IACT) are superb instruments to probe the very-high-energy gamma-ray sky. This type of telescope focuses the Cherenkov light emitted from air showers, initiated by very-high-energy gamma rays and co