ﻻ يوجد ملخص باللغة العربية
Hyperspectral images (HSIs) have been widely applied in many fields, such as military, agriculture, and environment monitoring. Nevertheless, HSIs commonly suffer from various types of noise during acquisition. Therefore, denoising is critical for HSI analysis and applications. In this paper, we propose a novel blind denoising method for HSIs based on Multi-Stream Denoising Network (MSDNet). Our network consists of the noise estimation subnetwork and denoising subnetwork. In the noise estimation subnetwork, a multiscale fusion module is designed to capture the noise from different scales. Then, the denoising subnetwork is utilized to obtain the final denoising image. The proposed MSDNet can obtain robust noise level estimation, which is capable of improving the performance of HSI denoising. Extensive experiments on HSI dataset demonstrate that the proposed method outperforms four closely related methods.
Low-rankness is important in the hyperspectral image (HSI) denoising tasks. The tensor nuclear norm (TNN), defined based on the tensor singular value decomposition, is a state-of-the-art method to describe the low-rankness of HSI. However, TNN ignore
Hyperspectral image (HSI) has some advantages over natural image for various applications due to the extra spectral information. During the acquisition, it is often contaminated by severe noises including Gaussian noise, impulse noise, deadlines, and
One popular strategy for image denoising is to design a generalized regularization term that is capable of exploring the implicit prior underlying data observation. Convolutional neural networks (CNN) have shown the powerful capability to learn image
Previous works have shown that convolutional neural networks can achieve good performance in image denoising tasks. However, limited by the local rigid convolutional operation, these methods lead to oversmoothing artifacts. A deeper network structure
Neural architecture search (NAS) has recently reshaped our understanding on various vision tasks. Similar to the success of NAS in high-level vision tasks, it is possible to find a memory and computationally efficient solution via NAS with highly com