ﻻ يوجد ملخص باللغة العربية
One popular strategy for image denoising is to design a generalized regularization term that is capable of exploring the implicit prior underlying data observation. Convolutional neural networks (CNN) have shown the powerful capability to learn image prior information through a stack of layers defined by a combination of kernels (filters) on the input. However, existing CNN-based methods mainly focus on synthetic gray-scale images. These methods still exhibit low performance when tackling multi-channel color image denoising. In this paper, we optimize CNN regularization capability by developing a kernel regulation module. In particular, we propose a kernel regulation network-block, referred to as KR-block, by integrating the merits of both large and small kernels, that can effectively estimate features in solving image denoising. We build a deep CNN-based denoiser, referred to as KRNET, via concatenating multiple KR-blocks. We evaluate KRNET on additive white Gaussian noise (AWGN), multi-channel (MC) noise, and realistic noise, where KRNET obtains significant performance gains over state-of-the-art methods across a wide spectrum of noise levels.
Previous works have shown that convolutional neural networks can achieve good performance in image denoising tasks. However, limited by the local rigid convolutional operation, these methods lead to oversmoothing artifacts. A deeper network structure
Low-dose CT has been a key diagnostic imaging modality to reduce the potential risk of radiation overdose to patient health. Despite recent advances, CNN-based approaches typically apply filters in a spatially invariant way and adopt similar pixel-le
We propose an efficient neural network for RAW image denoising. Although neural network-based denoising has been extensively studied for image restoration, little attention has been given to efficient denoising for compute limited and power sensitive
Neural architecture search (NAS) has recently reshaped our understanding on various vision tasks. Similar to the success of NAS in high-level vision tasks, it is possible to find a memory and computationally efficient solution via NAS with highly com
Convolutional Neural Networks (CNNs) have recently become a favored technique for image denoising due to its adaptive learning ability, especially with a deep configuration. However, their efficacy is inherently limited owing to their homogenous netw