ﻻ يوجد ملخص باللغة العربية
We consider theoretically an electronic Mach-Zehnder interferometer constructed from quantum Hall edge channels and quantum point contacts, fed with single electrons from a dynamic quantum dot source. By considering the energy dependence of the edge-channel guide centres, we give an account of the phase averaging in this set up that is particularly relevant for the short, high-energy wavepackets injected by this type of electron source. We present both analytic and numerical results for the energy-dependent arrival time distributions of the electrons and also give an analysis of the delay times associated with the quantum point contacts and their effects on the interference patterns. A key finding is that, contrary to expectation, maximum visibility requires the interferometer arms to be different in length, with an offset of up to a micron for typical parameters. By designing interferometers that incorporate this asymmetry in their geometry, phase-averaging effects can be overcome such that visibility is only limited by other incoherent mechanisms.
We present a detailed theoretical description of quantum coherent electron transport in voltage-biased cross-like Andreev interferometers. Making use of the charge conjugation symmetry encoded in the quasiclassical formalism, we elucidate a crucial r
Interferometry is an indispensable tool across all the natural sciences. Recently, a new type of interferometer based on phase-sensitive Fano resonances has been proposed and implemented. In these Fano interferometers, the two arms are formed by a sp
We theoretically study the inelastic scattering rate and the carrier mean free path for energetic hot electrons in graphene, including both electron-electron and electron-phonon interactions. Taking account of optical phonon emission and electron-ele
Due to their high energy, hot electrons in quantum Hall edge states can be considered as single particles that have the potential to be used for quantum optics-like experiments. Unlike photons, however, electrons typically undergo scattering processe
We have investigated the energy loss of hot electrons in metallic graphene by means of GHz noise thermometry at liquid helium temperature. We observe the electronic temperature T / V at low bias in agreement with the heat diffusion to the leads descr