ﻻ يوجد ملخص باللغة العربية
Acoustic microfluidics (or acoustofluidics) provides a non-contact and label-free means to manipulate and interrogate bioparticles. Owing to their biocompatibility and precision, acoustofluidic approaches have enabled innovations in various areas of biomedical research. Future breakthroughs will rely on translation of these techniques from academic labs to clinical and industrial settings. Here, accurate characterization and standardization of device performance is crucial. Versatile, rapid, and widely accessible performance quantification is needed. We propose a field quantification method using motile Chlamydomonas reinhardtii algae cells. We previously reported qualitative mapping of acoustic fields using living microswimmers as active probes. In the present study, we extend our approach to achieve the challenging quantitative in situ measurement of the acoustic energy density. C. reinhardtii cells continuously swim in an imposed force field and dynamically redistribute as the field changes. This behavior allows accurate and complete, real-time performance monitoring, which can be easily applied and adopted within the acoustofluidics and broader microfluidics research communities. Additionally, the approach relies only on standard bright-field microscopy to assess the field under numerous conditions within minutes. We benchmark the method against conventional passive-particle tracking, achieving agreement within 1 % for field strengths from 0 to 100 J m-3 (0 to ~1 MPa).
Contact between particles and motile cells underpins a wide variety of biological processes, from nutrient capture and ligand binding, to grazing, viral infection and cell-cell communication. The window of opportunity for these interactions is ultima
Motivated by recent experiments demonstrating that motile algae get trapped in draining foams, we study the trajectories of microorganisms confined in model foam channels (section of a Plateau border). We track single Chlamydomonas reinhardtii cells
Surface roughness becomes relevant if typical length scales of the system are comparable to the scale of the variations as it is the case in microfluidic setups. Here, an apparent boundary slip is often detected which can have its origin in the assum
Pressure calibration for most diamond-anvil cell (DAC) experiments is mainly based on the ruby scale, which is key to implement this powerful tool for high-pressure study. However, the ruby scale can often hardly be used for programmably-controlled D
The flexibility of the bacterial flagellar hook is believed to have substantial consequences for microorganism locomotion. Using a simplified model of a rigid flagellum and a flexible hook, we show that the paths of axisymmetric cell bodies driven by