ترغب بنشر مسار تعليمي؟ اضغط هنا

Riemann-Hilbert problem for the nonlinear Schr{o}dinger equation with multiple high-order poles under nonzero boundary conditions

100   0   0.0 ( 0 )
 نشر من قبل Shou-Fu Tian
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Riemann-Hilbert (RH) problem is first developed to study the focusing nonlinear Schr{o}dinger (NLS) equation with multiple high-order poles under nonzero boundary conditions. Laurent expansion and Taylor series are employed to replace the residues at the simple- and the second-poles. Further, the solution of RH problem is transformed into a closed system of algebraic equations, and the soliton solutions corresponding to the transmission coefficient $1/s_{11}(z)$ with an $N$-order pole are obtained by solving the algebraic system. Then, in a more general case, the transmission coefficient with multiple high-order poles is studied, and the corresponding solutions are obtained. In addition, for high-order pole, the propagation behavior of the soliton solution corresponding to a third-order pole is given as example.



قيم البحث

اقرأ أيضاً

We consider a matrix Riemann-Hilbert problem for the sextic nonlinear Schr{o}dinger equation with a non-zero boundary conditions at infinity. Before analyzing the spectrum problem, we introduce a Riemann surface and uniformization coordinate variable in order to avoid multi-value problems. Based on a new complex plane, the direct scattering problem perform a detailed analysis of the analytical, asymptotic and symmetry properties of the Jost functions and the scattering matrix. Then, a generalized Riemann-Hilbert problem (RHP) is successfully established from the results of the direct scattering transform. In the inverse scattering problem, we discuss the discrete spectrum, residue condition, trace formula and theta condition under simple poles and double poles respectively, and further solve the solution of a generalized RHP. Finally, we derive the solution of the equation for the cases of different poles without reflection potential. In addition, we analyze the localized structures and dynamic behaviors of the resulting soliton solutions by taking some appropriate values of the parameters appeared in the solutions.
In this work, we consider the generalized variable-coefficient nonlinear Schr{o}dinger equation with non-vanishing boundary conditions at infinity including the simple and double poles of the scattering coefficients. By introducing an appropriate Rie mann surface and uniformization coordinate variable, we first convert the double-valued functions which occur in the process of direct scattering to single-value functions. Then, we establish the direct scattering problem via analyzing the analyticity, symmetries and asymptotic behaviors of Jost functions and scattering matrix derived from Lax pairs of the equation. Based on these results, a generalized Riemann-Hilbert problem is successfully established for the equation. The discrete spectrum and residual conditions, trace foumulae and theta conditions are investigated systematically including the simple poles case and double poles case. Moreover, the inverse scattering problem is solved via the Riemann-Hilbert approach. Finally, under the condition of reflection-less potentials, the soliton and breather solutions are well derived. Via evaluating the impact of each parameters, some interesting phenomena of these solutions are analyzed graphically.
We extend the Riemann-Hilbert (RH) method to study the inverse scattering transformation and high-order pole solutions of the focusing and defocusing nonlocal (reverse-space-time) modified Korteweg-de Vries (mKdV) equations with nonzero boundary cond itions (NZBCs) at infinity and successfully find its multiple soliton solutions with one high-order pole and multiple high-order poles. By introducing the generalized residue formula, we overcome the difficulty caused by calculating the residue conditions corresponding to the higher-order poles. In accordance with the Laurent series of reflection coefficient and oscillation term, the determinant formula of the high-order pole solution with NZBCs is established. Finally, combined with specific parameters, the dynamic propagation behaviors of the high-order pole solutions are further analyzed and some very interesting phenomena are obtained, including kink solution, anti kink solution, rational solution and breathing-soliton solution.
We derive a straightforward variational method to construct embedded soliton solutions of the third-order nonlinear Schodinger equation and analytically demonstrate that these solitons exist as a continuous family. We argue that a particular embedded soliton when perturbed may always relax to the adjacent one so as to make it fully stable.
100 - Remi Carles 2021
We analyze dynamical properties of the logarithmic Schr{o}dinger equation under a quadratic potential. The sign of the nonlinearity is such that it is known that in the absence of external potential, every solution is dispersive, with a universal asy mptotic profile. The introduction of a harmonic potential generates solitary waves, corresponding to generalized Gaussons. We prove that they are orbitally stable, using an inequality related to relative entropy, which may be thought of as dual to the classical logarithmic Sobolev inequality. In the case of a partial confinement, we show a universal dispersive behavior for suitable marginals. For repulsive harmonic potentials, the dispersive rate is dictated by the potential, and no universal behavior must be expected.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا