ﻻ يوجد ملخص باللغة العربية
We extend the Riemann-Hilbert (RH) method to study the inverse scattering transformation and high-order pole solutions of the focusing and defocusing nonlocal (reverse-space-time) modified Korteweg-de Vries (mKdV) equations with nonzero boundary conditions (NZBCs) at infinity and successfully find its multiple soliton solutions with one high-order pole and multiple high-order poles. By introducing the generalized residue formula, we overcome the difficulty caused by calculating the residue conditions corresponding to the higher-order poles. In accordance with the Laurent series of reflection coefficient and oscillation term, the determinant formula of the high-order pole solution with NZBCs is established. Finally, combined with specific parameters, the dynamic propagation behaviors of the high-order pole solutions are further analyzed and some very interesting phenomena are obtained, including kink solution, anti kink solution, rational solution and breathing-soliton solution.
In this work, we extend the Riemann-Hilbert (RH) method in order to study the coupled modified Korteweg-de Vries equation (cmKdV) under nonzero boundary conditions (NZBCs), and successfully find its solutions with their various dynamic propagation be
The theory of inverse scattering is developed to study the initial-value problem for the modified matrix Korteweg-de Vries (mmKdV) equation with the $2mtimes2m$ $(mgeq 1)$ Lax pairs under the nonzero boundary conditions at infinity. In the direct pro
The $n$-fold Darboux transformation $T_{n}$ of the focusing real mo-di-fied Kor-te-weg-de Vries (mKdV) equation is expressed in terms of the determinant representation. Using this representation, the $n$-soliton solutions of the mKdV equation are als
In this paper, we consider the real modified Korteweg-de Vries (mKdV) equation and construct a special kind of breather solution, which can be obtained by taking the limit $lambda_{j}$ $rightarrow$ $lambda_{1}$ of the Lax pair eigenvalues used in the
The stability of the elliptic solutions to the defocusing complex modified Korteweg-de Vries (cmKdV) equation is studied. The orbital stability of the cmKdV equation was established in [19] when the periodic orbits do not oscillate around zero. In th