ﻻ يوجد ملخص باللغة العربية
In this work we verify consistency of refined topological string theory from several perspectives. First, we advance the method of computing refined open amplitudes by means of geometric transitions. Based on such computations we show that refined open BPS invariants are non-negative integers for a large class of toric Calabi-Yau threefolds: an infinite class of strip geometries, closed topological vertex geometry, and some threefolds with compact four-cycles. Furthermore, for an infinite class of toric geometries without compact four-cycles we show that refined open string amplitudes take form of quiver generating series. This generalizes the relation to quivers found earlier in the unrefined case, implies that refined open BPS states are made of a finite number of elementary BPS states, and asserts that all refined open BPS invariants associated to a given brane are non-negative integers in consequence of their relation to (integer and non-negative) motivic Donaldson-Thomas invariants. Non-negativity of motivic Donaldson-Thomas invariants of a symmetric quiver is therefore crucial in the context of refined open topological strings. Furthermore, reinterpreting these results in terms of webs of five-branes, we analyze Hanany-Witten transitions in novel configurations involving lagrangian branes.
We consider the refined topological vertex of Iqbal et al, as a function of two parameters (x, y), and deform it by introducing Macdonald parameters (q, t), as in the work of Vuletic on plane partitions, to obtain a Macdonald refined topological vert
We present perturbative calculation of the width of the energy profile of rigid strings up to two loops in D dimensions. The perturbative expansion of the extrinsic curvature term signifying the rigidity/smoothness of the string in Polyakov-Kleinert
We relate the low-energy expansions of world-sheet integrals in genus-one amplitudes of open- and closed-string states. The respective expansion coefficients are elliptic multiple zeta values in the open-string case and non-holomorphic modular forms
A worldsheet realization of the refined topological string is proposed in terms of physical string amplitudes that compute generalized N=2 F-terms of the form F_{g,n} W^{2g}Y^{2n} in the effective supergravity action. These terms involve the chiral W
This contribution gives in sigma-model language a short review of recent work on T-duality for open strings in the presence of abelian or non-abelian gauge fields. Furthermore, it adds a critical discussion of the relation between RG beta-functions a