ﻻ يوجد ملخص باللغة العربية
Developing novel techniques for depositing transition metal dichalcogenides is crucial for the industrial adoption of 2D materials in optoelectronics. In this work, the lateral growth of molybdenum disulfide (MoS2) over an insulating surface is demonstrated using electrochemical deposition. By fabricating a new type of microelectrodes, MoS2 2D films grown from TiN electrodes across opposite sides have been connected over an insulating substrate, hence, forming a lateral device structure through only one lithography and deposition step. Using a variety of characterization techniques, the growth rate of MoS2 has been shown to be highly anisotropic with lateral to vertical growth ratios exceeding 20-fold. Electronic and photo-response measurements on the device structures demonstrate that the electrodeposited MoS2 layers behave like semiconductors, confirming their potential for photodetection applications. This lateral growth technique paves the way towards room temperature, scalable and site-selective production of various transition metal dichalcogenides and their lateral heterostructures for 2D materials-based fabricated devices.
Heterostructures involving two-dimensional (2D) transition metal dichalcogenides and other materials such as graphene have a strong potential to be the fundamental building block of many electronic and opto-electronic applications. The integration an
Integration of semiconducting transition metal dichalcogenides (TMDs) into functional optoelectronic circuitries requires an understanding of the charge transfer across the interface between the TMD and the contacting material. Here, we use spatially
Two-dimensional monolayer transition metal dichalcogenides (TMDs) have unique optical and electronic properties for applications pertaining to field effect transistors, light emitting diodes, photodetectors, and solar cells. Vertical interfacing of W
Two-dimensional (2D) materials and heterostructures have recently gained wide attention due to potential applications in optoelectronic devices. However, the optical properties of the heterojunction have not been properly characterized due to the lim
Complementary metal oxide semiconductor (CMOS) logic circuits at the ultimate scaling limit place the utmost demands on the properties of all materials involved. The requirements for semiconductors are well explored and could possibly be satisfied by