ﻻ يوجد ملخص باللغة العربية
Current state-of-the-art visual recognition systems usually rely on the following pipeline: (a) pretraining a neural network on a large-scale dataset (e.g., ImageNet) and (b) finetuning the network weights on a smaller, task-specific dataset. Such a pipeline assumes the sole weight adaptation is able to transfer the network capability from one domain to another domain, based on a strong assumption that a fixed architecture is appropriate for all domains. However, each domain with a distinct recognition target may need different levels/paths of feature hierarchy, where some neurons may become redundant, and some others are re-activated to form new network structures. In this work, we prove that dynamically adapting network architectures tailored for each domain task along with weight finetuning benefits in both efficiency and effectiveness, compared to the existing image recognition pipeline that only tunes the weights regardless of the architecture. Our method can be easily generalized to an unsupervised paradigm by replacing supernet training with self-supervised learning in the source domain tasks and performing linear evaluation in the downstream tasks. This further improves the search efficiency of our method. Moreover, we also provide principled and empirical analysis to explain why our approach works by investigating the ineffectiveness of existing neural architecture search. We find that preserving the joint distribution of the network architecture and weights is of importance. This analysis not only benefits image recognition but also provides insights for crafting neural networks. Experiments on five representative image recognition tasks such as person re-identification, age estimation, gender recognition, image classification, and unsupervised domain adaptation demonstrate the effectiveness of our method.
In real-world scenarios, many factors may harm face recognition performance, e.g., large pose, bad illumination,low resolution, blur and noise. To address these challenges, previous efforts usually first restore the low-quality faces to high-quality
Convolutional Architecture for Fast Feature Encoding (CAFFE) [11] is a software package for the training, classifying, and feature extraction of images. The UCF Sports Action dataset is a widely used machine learning dataset that has 200 videos taken
Systems for the automatic recognition and detection of automotive parts are crucial in several emerging research areas in the development of intelligent vehicles. They enable, for example, the detection and modelling of interactions between human and
We present a neural architecture search (NAS) technique to enhance the performance of unsupervised image de-noising, in-painting and super-resolution under the recently proposed Deep Image Prior (DIP). We show that evolutionary search can automatical
Traditional neural architecture search (NAS) has a significant impact in computer vision by automatically designing network architectures for various tasks. In this paper, binarized neural architecture search (BNAS), with a search space of binarized