ﻻ يوجد ملخص باللغة العربية
Traditional neural architecture search (NAS) has a significant impact in computer vision by automatically designing network architectures for various tasks. In this paper, binarized neural architecture search (BNAS), with a search space of binarized convolutions, is introduced to produce extremely compressed models to reduce huge computational cost on embedded devices for edge computing. The BNAS calculation is more challenging than NAS due to the learning inefficiency caused by optimization requirements and the huge architecture space, and the performance loss when handling the wild data in various computing applications. To address these issues, we introduce operation space reduction and channel sampling into BNAS to significantly reduce the cost of searching. This is accomplished through a performance-based strategy that is robust to wild data, which is further used to abandon less potential operations. Furthermore, we introduce the Upper Confidence Bound (UCB) to solve 1-bit BNAS. Two optimization methods for binarized neural networks are used to validate the effectiveness of our BNAS. Extensive experiments demonstrate that the proposed BNAS achieves a comparable performance to NAS on both CIFAR and ImageNet databases. An accuracy of $96.53%$ vs. $97.22%$ is achieved on the CIFAR-10 dataset, but with a significantly compressed model, and a $40%$ faster search than the state-of-the-art PC-DARTS. On the wild face recognition task, our binarized models achieve a performance similar to their corresponding full-precision models.
Neural architecture search (NAS) can have a significant impact in computer vision by automatically designing optimal neural network architectures for various tasks. A variant, binarized neural architecture search (BNAS), with a search space of binari
In this paper, we propose a binarized neural network learning method called BiDet for efficient object detection. Conventional network binarization methods directly quantize the weights and activations in one-stage or two-stage detectors with constra
Recently, deep learning has been utilized to solve video recognition problem due to its prominent representation ability. Deep neural networks for video tasks is highly customized and the design of such networks requires domain experts and costly tri
Recently, much attention has been spent on neural architecture search (NAS) approaches, which often outperform manually designed architectures on highlevel vision tasks. Inspired by this, we attempt to leverage NAS technique to automatically design e
Efficient search is a core issue in Neural Architecture Search (NAS). It is difficult for conventional NAS algorithms to directly search the architectures on large-scale tasks like ImageNet. In general, the cost of GPU hours for NAS grows with regard