ﻻ يوجد ملخص باللغة العربية
Obtaining coarse-grained models that accurately incorporate finite-size effects is an important open challenge in the study of complex, multi-scale systems. We apply Langevin regression, a recently developed method for finding stochastic differential equation (SDE) descriptions of realistically-sampled time series data, to understand finite-size effects in the Kuramoto model of coupled oscillators. We find that across the entire bifurcation diagram, the dynamics of the Kuramoto order parameter are statistically consistent with an SDE whose drift term has the form predicted by the Ott-Antonsen ansatz in the $Nto infty$ limit. We find that the diffusion term is nearly independent of the bifurcation parameter, and has a magnitude decaying as $N^{-1/2}$, consistent with the central limit theorem. This shows that the diverging fluctuations of the order parameter near the critical point are driven by a bifurcation in the underlying drift term, rather than increased stochastic forcing.
Modeling a high-dimensional Hamiltonian system in reduced dimensions with respect to coarse-grained (CG) variables can greatly reduce computational cost and enable efficient bottom-up prediction of main features of the system for many applications. H
The combination of high-dimensionality and disparity of time scales encountered in many problems in computational physics has motivated the development of coarse-grained (CG) models. In this paper, we advocate the paradigm of data-driven discovery fo
A coarse-grained model is developed to allow large-scale molecular dynamics (MD) simulations of a branched polyetherimide derived from two backbone monomers [4,4-bisphenol A dianhydride (BPADA) and m-phenylenediamine (MPD)], a chain terminator [phtha
We study the evolution of interacting groups of agents in two-dimensional geometries. We introduce a microscopic stochastic model that includes floor fields modeling the global flow of individual groups as well as local interaction rules. From this m
We study the dynamics of membrane vesicle motor transport into dendritic spines, which are bulbous intracellular compartments in neurons that play a key role in transmitting signals between neurons. We consider the stochastic analog of the vesicle tr